🎉🎉🎉Our paper has been accepted by IMAVIS!!! paper
- python3.6
- pytorch1.7
- tensorboard2.4
- First, train a teacher network
python teacher.py --arch [teacher]
- Then, construct multi-granularity knowledge
python train_teacher_wrapper.py --t-arch [teacher] --t-path [teacher-weight-path]
- Distill
Granularity-wise distillation
python student.py --kd_func [kd-function] --s-arch [student] --t-arch [teacher] --t-path [teacher-weight-path]
Stable excitation distillation
python student_stable.py --kd_func [kd-function] --s-arch [student] --t-arch [teacher] --t-path [teacher-weight-path]
- CIFAR100
WRN-40-2/WRN-16-2 | WRN-40-2/WRN-40-1 | res56/res20 | res110/res20 | res110/res32 | resnet32x4/resnet8x4 | vgg13/vgg8 | |
---|---|---|---|---|---|---|---|
T/S | 75.61/73.26 | 75.61/71.98 | 72.34/69.06 | 74.31/69.06 | 74.31/71.14 | 79.42/72.50 | 74.64/70.36 |
KD | 73.59 | 73.58 | 71.05 | 70.90 | 73.34 | 73.27 | 73.18 |
MAG+KD | 75.09 | 74.10 | 71.43 | 71.53 | 73.55 | 73.82 | 73.63 |
MAS+KD | 75.35 | 74.42 | 71.08 | 71.03 | 73.54 | 74.20 | 74.18 |
FitNet | 73.82 | 72.32 | 69.33 | 68.96 | 71.07 | 73.62 | 71.14 |
MAG+FitNet | 75.30 | 73.99 | 70.29 | 70.31 | 72.73 | 74.88 | 73.06 |
MAS+FitNet | 75.17 | 74.43 | 71.08 | 70.69 | 73.18 | 75.76 | 73.59 |
AT | 74.39 | 72.82 | 70.39 | 70.36 | 72.60 | 73.53 | 71.41 |
MAG+AT | 75.28 | 73.81 | 70.99 | 70.57 | 73.56 | 74.56 | 72.11 |
MAS+AT | 75.98 | 74.90 | 71.78 | 71.34 | 73.29 | 74.92 | 73.38 |
SP | 74.01 | 73.00 | 70.28 | 70.29 | 72.74 | 73.28 | 72.94 |
MAG+SP | 74.30 | 73.71 | 71.13 | 70.79 | 73.44 | 73.58 | 73.20 |
MAS+SP | 75.37 | 73.79 | 70.97 | 71.78 | 73.66 | 74.26 | 73.64 |
VID | 74.19 | 73.23 | 70.53 | 70.68 | 72.67 | 73.24 | 71.41 |
MAG+VID | 74.84 | 73.35 | 71.14 | 70.69 | 73.00 | 74.73 | 72.92 |
MAS+VID | 75.63 | 74.49 | 71.28 | 71.61 | 73.32 | 74.86 | 73.56 |
RKD | 73.37 | 72.10 | 69.67 | 69.44 | 72.24 | 72.03 | 71.35 |
MAG+RKD | 75.73 | 73.59 | 71.51 | 71.11 | 73.71 | 74.23 | 73.44 |
MAS+RKD | 75.31 | 74.30 | 71.91 | 71.06 | 73.17 | 74.39 | 73.06 |
CRD | 75.52 | 74.24 | 71.38 | 71.34 | 73.55 | 75.32 | 73.9 |
MAG+CRD | 75.84 | 74.53 | 71.77 | 71.91 | 74.00 | 75.89 | 74.29 |
MAS+CRD | 75.87 | 74.80 | 71.52 | 71.52 | 74.06 | 75.41 | 74.06 |
AFD | 75.41 | 73.66 | 71.32 | 71.20 | 73.46 | 74.72 | 73.57 |
MAG+AFD | 75.53 | 74.53 | 71.62 | 71.40 | 73.57 | 74.75 | 73.89 |
MAS+AFD | 75.55 | 74.12 | 71.49 | 71.22 | 74.00 | 75.03 | 73.62 |
- Market1501
Setting | Method | Backbone | Rank1 | mAP |
---|---|---|---|---|
1 | Vanilla | ResNet50 | 88.84 | 71.59 |
2 | Vanilla | DenseNet121 | 90.17 | 74.02 |
3 | Circle loss | DenseNet121 | 91.00 | 76.54 |
4 | HA-CNN | Inception | 90.90 | 75.60 |
5 | MLFN | ResNeXt | 90.10 | 74.30 |
6 | PCB | ResNet50 | 92.64 | 77.47 |
7 | OSNetx0.75 | OSNet | 93.60 | 82.50 |
8 | OSNetx1.0 | OSNet | 94.10 | 82.90 |
9 | MAS_RKD(T:2) | ResNet50 | 91.09 | 79.43 |
10 | MAS_RKD(T:8) | OSNetx0.75 | 94.50 | 84.30 |
@article{shao2021multi,
title={Multi-granularity for knowledge distillation},
author={Shao, Baitan and Chen, Ying},
journal={Image and Vision Computing},
pages={104286},
year={2021},
publisher={Elsevier}
}
This repo is partly based on the following repos, thank the authors a lot.