Skip to content

shyamc757/graph-neural-networks-for-traffic-prediction

 
 

Repository files navigation

Dynamic Modeling and Analysis of Urban Transportation Networks

This project presents a comprehensive study on predictive modeling of urban transportation dynamics, focusing on the integration and interaction between CitiBike and Yellow Taxi networks in New York City using Graph Neural Networks (GNNs).

Table of Contents

Project Structure

project
│
├── 1. Preprocessing
│   ├── Citibike Graph creation function.ipynb
│   ├── dev_preprocess_citibike.ipynb
│   └── dev_preprocess_taxi.ipynb
│
├── 2. NYC Zones
│   ├── Finding centroids of taxi zones.ipynb
│   ├── NYC Taxi Zones.geojson
│   └── ZoneCentroidGeneration.ipynb
│
├── 3. Data Aggregation for time series
│   ├── Daily aggregation of citibike data.ipynb
│   ├── Weekly aggregation of entire citibike data for TGN training.ipynb
│   ├── Monthly aggregation of entire Yellow Taxi data.ipynb
│   └── Monthly aggregation of entire citibike data.ipynb
│
├── 4. EDA
│   ├── sliding_months_EDA
│   │   ├── Sliding months EDA of Citibike.ipynb
│   │   └── Sliding months EDA of Yellow Taxi.ipynb
│   ├── sliding_weeks_EDA
│   │   ├── Sliding weeks EDA Yellow Taxi.ipynb
│   │   └── Sliding weeks EDA citibike.ipynb
│   └── sliding_years_EDA
│       ├── Sliding years EDA of Citibike.ipynb
│       └── Sliding years EDA of Yellow Taxi.ipynb
│
├── 5. gephiGraphs
│   ├── Screenshot 2024-04-17 at 10.35.41PM.png
│   ├── Screenshot 2024-04-17 at 9.52.22 PM.png
│   ├── betweensess.pdf
│   ├── betweensess.png
│   ├── geoLayout13.svg
│   ├── graph1.svg
│   ├── nyc_map.svg
│   └── successful2013.gephi
│
├── 6. Prediction & Report
│   ├── FinalWeightPrediction_WeeklyAggregated-v2.ipynb
│   ├── FinalWeightPrediction_WeeklyAggregated.ipynb
│   └── Report.pdf
│
├──.DS_Store
├── .gitignore
├── requirements_conda.txt
├── requirements_pip.txt
├── README.md

Getting Started

Prerequisites

  • Python 3.12 or later
  • Conda or pip
  • Jupyter Notebook or Jupyter Lab

Installation

Clone the repository:

git clone https://github.com/neelagarwal98/graph-neural-networks-for-traffic-prediction
.git
# Using Conda
conda create --name <env> --file requirements_conda.txt
conda activate <env>
# Using pip
pip install -r requirements_pip.txt

Usage

cd graph-neural-networks-for-traffic-prediction
jupyter notebook

Contributors

Acknowledgements

  • Professor Gonzalo Mateos Buckstein for guidance and insights.
  • PyTorch Geometric team for essential tools and libraries.

About

Network Science Analysis Project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%