This project presents a comprehensive study on predictive modeling of urban transportation dynamics, focusing on the integration and interaction between CitiBike and Yellow Taxi networks in New York City using Graph Neural Networks (GNNs).
project
│
├── 1. Preprocessing
│ ├── Citibike Graph creation function.ipynb
│ ├── dev_preprocess_citibike.ipynb
│ └── dev_preprocess_taxi.ipynb
│
├── 2. NYC Zones
│ ├── Finding centroids of taxi zones.ipynb
│ ├── NYC Taxi Zones.geojson
│ └── ZoneCentroidGeneration.ipynb
│
├── 3. Data Aggregation for time series
│ ├── Daily aggregation of citibike data.ipynb
│ ├── Weekly aggregation of entire citibike data for TGN training.ipynb
│ ├── Monthly aggregation of entire Yellow Taxi data.ipynb
│ └── Monthly aggregation of entire citibike data.ipynb
│
├── 4. EDA
│ ├── sliding_months_EDA
│ │ ├── Sliding months EDA of Citibike.ipynb
│ │ └── Sliding months EDA of Yellow Taxi.ipynb
│ ├── sliding_weeks_EDA
│ │ ├── Sliding weeks EDA Yellow Taxi.ipynb
│ │ └── Sliding weeks EDA citibike.ipynb
│ └── sliding_years_EDA
│ ├── Sliding years EDA of Citibike.ipynb
│ └── Sliding years EDA of Yellow Taxi.ipynb
│
├── 5. gephiGraphs
│ ├── Screenshot 2024-04-17 at 10.35.41PM.png
│ ├── Screenshot 2024-04-17 at 9.52.22 PM.png
│ ├── betweensess.pdf
│ ├── betweensess.png
│ ├── geoLayout13.svg
│ ├── graph1.svg
│ ├── nyc_map.svg
│ └── successful2013.gephi
│
├── 6. Prediction & Report
│ ├── FinalWeightPrediction_WeeklyAggregated-v2.ipynb
│ ├── FinalWeightPrediction_WeeklyAggregated.ipynb
│ └── Report.pdf
│
├──.DS_Store
├── .gitignore
├── requirements_conda.txt
├── requirements_pip.txt
├── README.md
- Python 3.12 or later
- Conda or pip
- Jupyter Notebook or Jupyter Lab
Clone the repository:
git clone https://github.com/neelagarwal98/graph-neural-networks-for-traffic-prediction
.git
# Using Conda
conda create --name <env> --file requirements_conda.txt
conda activate <env>
# Using pip
pip install -r requirements_pip.txt
cd graph-neural-networks-for-traffic-prediction
jupyter notebook
- Neel Agarwal ([email protected])
- Shyam Shah ([email protected])
- Professor Gonzalo Mateos Buckstein for guidance and insights.
- PyTorch Geometric team for essential tools and libraries.