forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[js/web] optimize reduce related operators (microsoft#17957)
### Description <!-- Describe your changes. --> ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. -->
- Loading branch information
Showing
2 changed files
with
380 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,266 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
import {DataType} from '../../../wasm-common'; | ||
import {TensorView} from '../../tensor-view'; | ||
import {ShapeUtil} from '../../util'; | ||
import {ComputeContext, ProgramInfo, ProgramShaderCacheInfo} from '../types'; | ||
|
||
import {inputVariable, outputVariable, ShaderHelper} from './common'; | ||
import {createReduceAttributesFromInputs, ReduceAttributes} from './reduce'; | ||
import {createTransposeProgramInfo} from './transpose'; | ||
|
||
const reduceOps: {[key: string]: string} = { | ||
max: 'select(bestValue, candidate, candidate > bestValue)', | ||
min: 'select(bestValue, candidate, candidate < bestValue)', | ||
mean: 'bestValue + candidate', | ||
sum: 'bestValue + candidate', | ||
prod: 'bestValue * candidate', | ||
sumSquare: 'bestValue + candidate * candidate', | ||
logSumExp: 'bestValue + exp(candidate)', | ||
l1: 'bestValue + abs(candidate)', | ||
l2: 'bestValue + candidate * candidate', | ||
logSum: 'bestValue + candidate' | ||
}; | ||
|
||
const reduceSharedOps: {[key: string]: string} = { | ||
max: 'select(bestValue, candidate, candidate > bestValue)', | ||
min: 'select(bestValue, candidate, candidate < bestValue)', | ||
mean: 'bestValue + candidate', | ||
sum: 'bestValue + candidate', | ||
prod: 'bestValue * candidate', | ||
sumSquare: 'bestValue + candidate', | ||
logSumExp: 'bestValue + candidate', | ||
l1: 'bestValue + candidate', | ||
l2: 'bestValue + candidate', | ||
logSum: 'bestValue + candidate' | ||
}; | ||
|
||
const reduceInitValues: {[key: string]: string} = { | ||
max: '_A[offset]', | ||
min: '_A[offset]', | ||
mean: '0', | ||
sum: '0', | ||
prod: '1', | ||
sumSquare: '0', | ||
logSumExp: '0', | ||
l1: '0', | ||
l2: '0', | ||
logSum: '0' | ||
}; | ||
|
||
const reduceOutputValues: {[key: string]: string} = { | ||
max: 'bestValue', | ||
min: 'bestValue', | ||
sum: 'bestValue', | ||
prod: 'bestValue', | ||
sumSquare: 'bestValue', | ||
logSumExp: 'log(bestValue)', | ||
l1: 'bestValue', | ||
l2: 'sqrt(bestValue)', | ||
logSum: 'log(bestValue)' | ||
}; | ||
|
||
const getInnerMostAxes = (numInnerAxes: number, rank: number): number[] => { | ||
const res = []; | ||
for (let i = rank - numInnerAxes; i < rank; ++i) { | ||
res.push(i); | ||
} | ||
return res; | ||
}; | ||
|
||
const computeOutAndReduceShapes = (shape: readonly number[], axes: readonly number[]): [number[], number[]] => { | ||
const outputShape = []; | ||
const rank = shape.length; | ||
for (let dim = 0; dim < rank; dim++) { | ||
if (axes.indexOf(dim) === -1) { | ||
outputShape.push(shape[dim]); | ||
} | ||
} | ||
const reduceShape = axes.map(dim => shape[dim]); | ||
return [outputShape, reduceShape]; | ||
}; | ||
|
||
const expandShapeToKeepDim = (shape: number[], axes: number[]): number[] => { | ||
const rank = shape.length + axes.length; | ||
const expandShape = []; | ||
let shapeIdx = 0; | ||
for (let dim = 0; dim < rank; dim++) { | ||
if (axes.indexOf(dim) === -1) { | ||
expandShape.push(shape[shapeIdx++]); | ||
} else { | ||
expandShape.push(1); | ||
} | ||
} | ||
return expandShape; | ||
}; | ||
|
||
const areAxesInnerMostDims = (axes: number[], rank: number): boolean => { | ||
for (let i = 0; i < axes.length; ++i) { | ||
if (axes[axes.length - i - 1] !== rank - 1 - i) { | ||
return false; | ||
} | ||
} | ||
return true; | ||
}; | ||
|
||
const getAxesPermutation = (axes: number[], rank: number): number[] => { | ||
const res = []; | ||
if (!areAxesInnerMostDims(axes, rank)) { | ||
for (let i = 0; i < rank; ++i) { | ||
if (axes.indexOf(i) === -1) { | ||
res.push(i); | ||
} | ||
} | ||
axes.forEach(axis => res.push(axis)); | ||
} | ||
return res; | ||
}; | ||
|
||
export const createReduceSharedProgramInfo = | ||
(name: string, shaderCache: ProgramShaderCacheInfo, inputs: readonly TensorView[], reduceType: string, | ||
outputDataType: DataType, outputShape: number[], reduceShape: number[]): ProgramInfo => { | ||
const inputShape = inputs[0].dims; | ||
|
||
const outputSize = ShapeUtil.size(outputShape); | ||
const reduceSize = ShapeUtil.size(reduceShape); | ||
|
||
const input = inputVariable('_A', inputs[0].dataType, inputShape); | ||
const output = outputVariable('output', outputDataType, outputShape); | ||
|
||
const workgroupSize = 32; | ||
|
||
const sharedMemorySnippet = ` | ||
var<workgroup> aBestValues : array<${output.type.storage}, ${workgroupSize}>; | ||
`; | ||
|
||
const getShaderSource = (shaderHelper: ShaderHelper) => ` | ||
${shaderHelper.registerUniform('reduceSize', 'u32').declareVariables(input, output)} | ||
${sharedMemorySnippet} | ||
fn DIV_CEIL(a : u32, b : u32) -> u32 { | ||
return ((a - 1u) / b + 1u); | ||
} | ||
${shaderHelper.mainStart(workgroupSize)} | ||
let local_idx = local_id.x; | ||
let outputIndex = global_idx / ${workgroupSize}; | ||
let offset = outputIndex * uniforms.reduceSize; | ||
var bestValue = ${output.type.storage}(${reduceInitValues[reduceType]}); | ||
let Length = uniforms.reduceSize; | ||
for (var k = local_idx; k < Length; k = k + ${workgroupSize}) { | ||
let candidate = ${output.type.storage}(${input.getByOffset('offset + k')}); | ||
bestValue = ${reduceOps[reduceType]}; | ||
} | ||
aBestValues[local_idx] = bestValue; | ||
workgroupBarrier(); | ||
var reduceSize = min(Length, ${workgroupSize}u); | ||
for (var currentSize = reduceSize / 2u; reduceSize > 1u; | ||
currentSize = reduceSize / 2u) { | ||
let interval = DIV_CEIL(reduceSize, 2u); | ||
if (local_idx < currentSize) { | ||
let candidate = aBestValues[local_idx + interval]; | ||
bestValue = ${reduceSharedOps[reduceType]}; | ||
aBestValues[local_idx] = bestValue; | ||
} | ||
reduceSize = interval; | ||
workgroupBarrier(); | ||
} | ||
if (local_idx == 0u) { | ||
${ | ||
output.setByOffset( | ||
'outputIndex', | ||
`${ | ||
reduceType === 'mean' ? `bestValue / ${output.type.storage}(uniforms.reduceSize)` : | ||
`${reduceOutputValues[reduceType]}`}`)}; | ||
} | ||
}`; | ||
|
||
// One work group is responsible for only one element of output. | ||
return { | ||
name, | ||
shaderCache, | ||
getShaderSource, | ||
getRunData: () => ({ | ||
outputs: [{dims: outputShape, dataType: outputDataType}], | ||
dispatchGroup: {x: outputSize}, | ||
programUniforms: [{type: 'uint32', data: reduceSize}] | ||
}), | ||
}; | ||
}; | ||
|
||
const reduceCommon = | ||
(context: ComputeContext, name: string, attributes: ReduceAttributes, | ||
reduceType: 'sum'|'sumSquare'|'prod'|'min'|'max'|'mean'|'logSumExp'|'l1'|'l2'|'logSum'): void => { | ||
const updatedAttributes: ReduceAttributes = | ||
context.inputs.length === 1 ? attributes : createReduceAttributesFromInputs(context.inputs, attributes); | ||
|
||
let updatedAxes = updatedAttributes.axes; | ||
if (updatedAxes.length === 0 && !updatedAttributes.noopWithEmptyAxes) { | ||
updatedAxes = context.inputs[0].dims.map((s, i) => i); | ||
} | ||
const normalizeAxes = ShapeUtil.normalizeAxes(updatedAxes, context.inputs[0].dims.length); | ||
|
||
let axes = normalizeAxes; | ||
let input = context.inputs[0]; | ||
const permutedAxes = getAxesPermutation(axes, context.inputs[0].dims.length); | ||
if (permutedAxes.length > 0) { | ||
input = context.compute( | ||
createTransposeProgramInfo(context.inputs[0], permutedAxes), {inputs: [0], outputs: [-1]})[0]; | ||
axes = getInnerMostAxes(axes.length, input.dims.length); | ||
} | ||
|
||
const [outputShape, reduceShape] = computeOutAndReduceShapes(input.dims, axes); | ||
let finalOutputShape = outputShape; | ||
if (updatedAttributes.keepDims) { | ||
finalOutputShape = expandShapeToKeepDim(outputShape, normalizeAxes); | ||
} | ||
|
||
context.compute( | ||
createReduceSharedProgramInfo( | ||
name, {hint: updatedAttributes.cacheKey, inputDependencies: ['type']}, [input], reduceType, | ||
context.inputs[0].dataType, finalOutputShape, reduceShape), | ||
{inputs: [input]}); | ||
}; | ||
|
||
export const reduceMeanShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceMeanShared', attributes, 'mean'); | ||
}; | ||
|
||
export const reduceL1Shared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceL1Shared', attributes, 'l1'); | ||
}; | ||
|
||
export const reduceL2Shared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceL2Shared', attributes, 'l2'); | ||
}; | ||
|
||
export const reduceLogSumExpShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceLogSumExpShared', attributes, 'logSumExp'); | ||
}; | ||
|
||
export const reduceMaxShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceMaxShared', attributes, 'max'); | ||
}; | ||
|
||
export const reduceMinShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceMinShared', attributes, 'min'); | ||
}; | ||
|
||
export const reduceProdShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceProdShared', attributes, 'prod'); | ||
}; | ||
|
||
export const reduceSumShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceSumShared', attributes, 'sum'); | ||
}; | ||
|
||
export const reduceSumSquareShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceSumSquareShared', attributes, 'sumSquare'); | ||
}; | ||
|
||
export const reduceLogSumShared = (context: ComputeContext, attributes: ReduceAttributes): void => { | ||
reduceCommon(context, 'ReduceLogSumShared', attributes, 'logSum'); | ||
}; |
Oops, something went wrong.