Skip to content

Commit

Permalink
Refactored code into separate modules
Browse files Browse the repository at this point in the history
  • Loading branch information
sjmoran committed Oct 17, 2024
1 parent b2550c2 commit b5113bf
Show file tree
Hide file tree
Showing 10 changed files with 2,620 additions and 2,098 deletions.
403 changes: 403 additions & 0 deletions api_clients.py

Large diffs are not rendered by default.

712 changes: 712 additions & 0 deletions coin_analysis.py

Large diffs are not rendered by default.

63 changes: 63 additions & 0 deletions config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import os
from dotenv import load_dotenv # Load dotenv
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

# Load environment variables from .env file
load_dotenv()

# Initialize Sanpy API key
SAN_API_KEY = os.getenv('SAN_API_KEY')

# Surge-related words
surge_words = [
"surge", "spike", "soar", "rocket", "skyrocket", "rally", "boom", "bullish",
"explosion", "rise", "uptrend", "bull run", "moon", "parabolic", "spurt",
"climb", "jump", "upswing", "gain", "increase", "growth", "rebound",
"breakout", "spurt", "pump", "fly", "explode", "shoot up", "hike",
"expand", "appreciate", "bull market", "peak", "momentum", "outperform",
"spike up", "ascend", "elevation", "expansion", "revive", "uprising",
"push up", "escalate", "rise sharply", "escalation", "recover",
"inflation", "strengthen", "gain strength", "intensify"
]

# Volume thresholds for liquidity risk
LOW_VOLUME_THRESHOLD_LARGE = 1_000_000 # Large-cap coins with daily volume under $1M
LOW_VOLUME_THRESHOLD_MID = 500_000 # Mid-cap coins with daily volume under $500k
LOW_VOLUME_THRESHOLD_SMALL = 100_000 # Small-cap coins with daily volume under $100k

# Email configuration
EMAIL_FROM = os.getenv('EMAIL_FROM')
EMAIL_TO = os.getenv('EMAIL_TO')
SMTP_SERVER = os.getenv('SMTP_SERVER')
SMTP_USERNAME = os.getenv('SMTP_USERNAME')
SMTP_PASSWORD = os.getenv('SMTP_PASSWORD')
SMTP_PORT = 587

# Files and Tickers
RESULTS_FILE = "surging_coins.csv"
CRYPTO_NEWS_TICKERS = "tickers.csv"

# Score thresholds
FEAR_GREED_THRESHOLD = 60 # Fear and Greed index threshold
HIGH_VOLATILITY_THRESHOLD = 0.05 # 5% volatility is considered high
MEDIUM_VOLATILITY_THRESHOLD = 0.02 # 2% volatility is considered medium
NUMBER_OF_TOP_COINS_TO_MONITOR = 3

# Testing and retries
TEST_ONLY = False # Set to False to monitor all coins
MAX_RETRIES = 2 # Maximum number of retries for API calls
BACKOFF_FACTOR = 2 # Factor by which the wait time increases after each failure

# Reporting
CUMULATIVE_SCORE_REPORTING_THRESHOLD = 50 # Only report results with cumulative score above this % value

AURORA_HOST = os.getenv('AURORA_HOST') # Make sure this points to the correct server
AURORA_PORT = os.getenv('AURORA_PORT', 5432) # Ensure the port is correct (default is 5432)
AURORA_DB = os.getenv('AURORA_DB')
AURORA_USER = os.getenv('AURORA_USER')
AURORA_PASSWORD = os.getenv('AURORA_PASSWORD')

COIN_PAPRIKA_API_KEY=os.getenv('COIN_PAPRIKA_API_KEY')

# Initialize the VADER sentiment analyzer
analyzer = SentimentIntensityAnalyzer()
279 changes: 279 additions & 0 deletions data_management.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,279 @@
import os
import pandas as pd
import psycopg2
from datetime import datetime
from sqlalchemy import create_engine
from config import (
AURORA_HOST, AURORA_PORT, AURORA_DB, AURORA_USER, AURORA_PASSWORD, # Aurora DB credentials
RESULTS_FILE
)
from psycopg2 import OperationalError
import logging
import glob

def load_tickers(file_path):
"""
Loads a CSV file containing coin names and tickers, and returns a dictionary mapping
the coin names to their tickers.
Parameters:
file_path (str): The path to the CSV file to load.
Returns:
dict: A dictionary mapping coin names to their tickers.
"""
tickers_df = pd.read_csv(file_path)
# Create a dictionary mapping the coin names to their tickers
tickers_dict = pd.Series(tickers_df['Ticker'].values, index=tickers_df['Name']).to_dict()
return tickers_dict

def save_result_to_csv(result):
"""
Saves a single result as a row in a CSV file for the current date.
The result will be appended to the existing file if it exists, or written to a new file if not.
Parameters:
result (dict): A dictionary containing at least the keys 'coin', 'market_cap', 'volume_24h',
'price_change_7d', and 'fear_greed_index'.
"""
# Get current date as a string (e.g., '2024-10-03')
current_date = datetime.now().strftime("%Y-%m-%d")

# Create a filename with the current date
results_file = f"results_{current_date}.csv"

# Check if today's results file exists
if not os.path.exists(results_file):
# If the file doesn't exist, create it with headers
pd.DataFrame([result]).to_csv(results_file, mode='w', header=True, index=False)
else:
# If the file exists, append to it without writing headers again
pd.DataFrame([result]).to_csv(results_file, mode='a', header=False, index=False)

def retrieve_historical_data_from_aurora():
"""
Retrieves historical cumulative scores from Amazon Aurora for all coins.
Returns:
pd.DataFrame: A DataFrame containing the timestamp, coin name, and cumulative score.
"""
engine = None
try:
# Build the database connection string
db_connection_str = (
f"postgresql://{os.getenv('AURORA_USER')}:{os.getenv('AURORA_PASSWORD')}"
f"@{os.getenv('AURORA_HOST')}:{os.getenv('AURORA_PORT', 5432)}/{os.getenv('AURORA_DB')}"
)

# Create an SQLAlchemy engine
engine = create_engine(db_connection_str)

# Define the SQL query to retrieve time series data
query = """
SELECT coin_name, cumulative_score, timestamp
FROM coin_data
ORDER BY timestamp;
"""

# Use pandas to execute the query and return the result as a DataFrame
df = pd.read_sql(query, engine)
print("Historical data retrieved successfully.")
return df

except SQLAlchemyError as e:
print(f"Error retrieving historical data: {e}")
return pd.DataFrame() # Return empty DataFrame on failure

finally:
if engine:
engine.dispose() # Close the connection
print("PostgreSQL connection is closed.")

def load_tickers(file_path):
"""
Loads a CSV file containing coin names and tickers, and returns a dictionary mapping
the coin names to their tickers.
Parameters:
file_path (str): The path to the CSV file to load.
Returns:
dict: A dictionary mapping coin names to their tickers.
"""
tickers_df = pd.read_csv(file_path)
# Create a dictionary mapping the coin names to their tickers
tickers_dict = pd.Series(tickers_df['Ticker'].values, index=tickers_df['Name']).to_dict()
return tickers_dict


def save_cumulative_score_to_aurora(coin_id, coin_name, cumulative_score):
"""
Save a cumulative score for a specific coin in Amazon Aurora (PostgreSQL) with a date-based timestamp.
Parameters:
coin_id (str): The unique identifier for the coin.
coin_name (str): The name of the coin.
cumulative_score (float): The cumulative score of the coin.
"""
connection = None # Initialize connection variable
cursor = None # Initialize cursor variable

try:
# Establish connection to PostgreSQL Aurora instance
connection = psycopg2.connect(
host=os.getenv('AURORA_HOST'),
database=os.getenv('AURORA_DB'),
user=os.getenv('AURORA_USER'),
password=os.getenv('AURORA_PASSWORD'),
port=os.getenv('AURORA_PORT', 5432) # Default port for PostgreSQL is 5432
)

cursor = connection.cursor()

# Insert the cumulative score with the current date (no time part)
insert_query = """
INSERT INTO coin_data (coin_id, coin_name, cumulative_score, timestamp)
VALUES (%s, %s, %s, %s)
ON CONFLICT (coin_id, timestamp)
DO UPDATE SET cumulative_score = EXCLUDED.cumulative_score;
"""

# Truncate timestamp to just the day (remove time component)
current_date = datetime.now().date() # Get only the date part

cursor.execute(insert_query, (coin_id, coin_name, cumulative_score, current_date))

connection.commit()
print(f"Cumulative score for {coin_name} saved/updated successfully for {current_date}.")

except psycopg2.OperationalError as e:
print(f"Error connecting to Amazon Aurora DB: {e}")

finally:
# Check if cursor was created and close it
if cursor is not None:
try:
cursor.close()
print("Cursor is closed.")
except Exception as e:
print(f"Error closing cursor: {e}")

# Check if connection was created and close it
if connection is not None:
try:
connection.close()
print("PostgreSQL connection is closed.")
except Exception as e:
print(f"Error closing connection: {e}")



def load_existing_results():
"""
Loads existing results from the CSV file for the current date.
If the file for the current date does not exist, all other 'results_' CSV files are deleted, and an empty DataFrame is returned.
Parameters:
None
Returns:
pd.DataFrame: A pandas DataFrame object containing the existing results, or an empty DataFrame if no file exists for the current date.
"""
def adjust_row_length(row, expected_columns=20):
# Adjust rows with missing data by filling in default values (e.g., None)
if len(row) < expected_columns:
row += [None] * (expected_columns - len(row)) # Fill missing fields with None
return row

# Get the current date as a string (e.g., '2024-10-03')
current_date = datetime.now().strftime("%Y-%m-%d")

# Construct the expected file name
results_file = f"results_{current_date}.csv"

# Check if the file exists for the current date
if not os.path.exists(results_file):
logging.debug(f"File {results_file} does not exist. Removing all old results files.")

# Remove all other CSV files that start with 'results_'
for file in glob.glob('results_*.csv'):
try:
os.remove(file)
logging.info(f"Deleted old results file: {file}")
except Exception as e:
logging.error(f"Failed to delete file {file}: {e}")

# Return an empty DataFrame since no file exists for today
return pd.DataFrame()

try:
# Read the CSV and treat the first row as the header (column names)
df = pd.read_csv(results_file, header=0, delimiter=',', engine='python', on_bad_lines='skip')

# Get the number of expected columns from the DataFrame's columns
expected_columns = len(df.columns)

# Convert DataFrame rows to lists for manual adjustment
adjusted_rows = df.apply(lambda row: adjust_row_length(list(row), expected_columns), axis=1)

# Convert back to DataFrame after adjustment, using the original column names
adjusted_df = pd.DataFrame(adjusted_rows.tolist(), columns=df.columns)

return adjusted_df

except FileNotFoundError:
logging.error(f"File {results_file} not found.")
return pd.DataFrame() # Return an empty DataFrame if the file is not found

except pd.errors.ParserError as e:
logging.error(f"Error parsing CSV: {e}")
return pd.DataFrame() # Return an empty DataFrame if parsing fails

except Exception as e:
logging.error(f"An error occurred: {e}")
return pd.DataFrame() # Return an empty DataFrame for any other error

def create_coin_data_table_if_not_exists():
"""
Creates the 'coin_data' table in Amazon Aurora (PostgreSQL) if it doesn't already exist,
storing time series data for cumulative scores.
"""
connection = None # Initialize the connection variable to None
try:
# Connect to PostgreSQL Aurora instance
connection = psycopg2.connect(
host=os.getenv('AURORA_HOST'),
database=os.getenv('AURORA_DB'),
user=os.getenv('AURORA_USER'),
password=os.getenv('AURORA_PASSWORD'),
port=os.getenv('AURORA_PORT', 5432) # Default port for PostgreSQL is 5432
)

cursor = connection.cursor()

# SQL to create the table if it doesn't exist, allowing time series data
create_table_query = """
CREATE TABLE IF NOT EXISTS coin_data (
id SERIAL PRIMARY KEY,
coin_id VARCHAR(255) NOT NULL,
coin_name VARCHAR(255) NOT NULL,
cumulative_score FLOAT NOT NULL,
timestamp DATE DEFAULT CURRENT_DATE,
UNIQUE (coin_id, timestamp) -- Unique constraint to ensure one entry per coin per day
);
"""
cursor.execute(create_table_query)
connection.commit()
print("Table created or already exists.")

except OperationalError as e:
print(f"Error while connecting to Amazon Aurora: {e}")

finally:
# Close the connection if it was successfully created
if connection:
cursor.close()
connection.close()
print("PostgreSQL connection is closed.")
Loading

0 comments on commit b5113bf

Please sign in to comment.