Skip to content

Commit

Permalink
Auto-translate README
Browse files Browse the repository at this point in the history
  • Loading branch information
Continuous Integration committed Jun 22, 2024
1 parent 1e23768 commit 687ab6b
Show file tree
Hide file tree
Showing 2 changed files with 27 additions and 28 deletions.
24 changes: 12 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
# Data Extract-Load-Transform
# Data Extract-Load-Transform for Autosink Project

[🇬🇧](README.md) | [🇰🇷](README.kr.md) | [🇨🇳](README.zh-CN.md)

Parse the values in the data lake and load them into memory, so that the data labeler can be executed. It puts the labeled data into the feature store. autosink-data-elt contains utility classes for reading and writing json files stored in the data lake, and defines data types. When the data extracted from the Raspberry Pi is stored in the data lake, it is loaded, labeled, and stored in the feature store in transformed form, so it is named ELT.
Parse the values in the data lake and load them into memory, then make it executable for the data labeler. It organizes the labeled data into a format that is easy for the feature store to store. The autosink-data-elt contains utility classes and data type definitions for reading and writing json files stored in the data lake. When the data extracted from the Raspberry Pi is stored in the data lake, it is loaded, labeled, and transformed into a form that can be stored in the feature store, so it is named ELT.

## Features

- [ ] Parse the values in the data lake and load them into memory, then organize them in a way that the data labeler can easily read.
- [ ] Call the labeler.
- [ ] Put the labeled data into the feature store.
- [ ] Parse the values in the data lake and load them into memory, then organize them into a format that is easy for the data labeler to read.
- [ ] Call the data labeler.
- [ ] Store the labeled data in the feature store.

# Environment

Expand All @@ -21,27 +21,27 @@ The `Makefile` has the following functions.
### `make lint`

- To use the `.vscode` settings, install the `pylint` extension.
- Overrides the options specified in the `pyproject.toml` file to lint the code.
- Override the options specified in the `pyproject.toml` file to lint the code with the default settings of the linter.

### `make format`

- Uses google's `yapf` formatter.
- Overrides the options specified in the `pyproject.toml` file to format the code.
- The formatter uses google's `yapf`.
- Override the options specified in the `pyproject.toml` file to format the code with the default settings of the `yapf` formatter.
- To use the `.vscode` settings, install the `yapf` extension.

### `make test`

- Uses `unittest` for testing.
- The test uses `unittest`.
- Supports both `test_*.py` and `*_test.py` patterns.
- The test file must be connected to `__init__.py` up to the location of the test file.
- The test file must be connected to `__init__.py` up to the location where the test file exists.

### `make publish`

- Write the `~/.pypirc` file as follows.
```
[pypi]
username = __token__
password = pypi-어쩌고저쩌고 # Replace with your personal API token.
password = pypi-어쩌고저쩌고 # Write your personal API token.
```
- This command uses `flit` to push the package to the PyPI public registry.
- The previously specified name `myproject` (alias) will be uploaded, and anyone in the world can install the package using `python3 -m pip install myproject`.
- The package uploaded with the name specified earlier as `
31 changes: 15 additions & 16 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
@@ -1,41 +1,40 @@
# 数据提取-加载-转换
# Autosink 项目的数据提取-加载-转换

[🇬🇧](README.md) | [🇰🇷](README.kr.md) | [🇨🇳](README.zh-CN.md)

解析数据湖中的值并将其加载到内存中,然后可以运行数据标记器。将完成标记的数据存储到特征存储中。autosink-data-elt包括用于读取和写入数据湖中存储的json文件的实用程序类和定义的数据类型。当从树莓派提取的数据存储在数据湖中时,将数据加载并进行标记,以转换为特征存储中的形式,因此将其命名为ELT
将数据湖中的值解析并加载到内存中,然后使数据标记器可以运行。autosink-data-elt 包含了用于很好地读取和写入数据湖中存储的 json 文件的实用类,以及定义了数据类型。当从树莓派提取的数据存储在数据湖中时,将数据加载并标记,然后将转换后的数据存储到特征存储中,因此将其命名为 ELT

## 功能

- [ ] 解析数据湖中的值并将其加载到内存中,然后将数据标记器整理为易于读取的形式
- [ ] 解析数据湖中的值并将其加载到内存中,然后整理为数据标记器方便读取的形式
- [ ] 调用标记器。
- [ ] 将完成标记的数据存储到特征存储中
- [ ] 将标记完成的数据存储到特征存储中

# 环境

环境基于 MacOSLinux。
环境基于 MacOSLinux。

## `Makefile`

`Makefile`具有以下功能。
`Makefile` 具有以下功能。

### `make lint`

- 若要使用`.vscode`设置,请安装`pylint`扩展。
- 使用linter的默认设置覆盖`pyproject.toml`文件中指定的选项来lint代码
- 要使用 `.vscode` 设置,请安装 `pylint` 扩展。
- 使用默认的 linter 设置,覆盖在 `pyproject.toml` 文件中指定的选项来进行代码检查

### `make format`

- 格式化程序使用google的`yapf`
- 使用`pyproject.toml`文件中指定的选项覆盖`yapf`格式化程序的默认设置来格式化代码。
- 若要使用`.vscode`设置,请安装`yapf`扩展。
- 格式化程序使用 google 的 `yapf`
- 使用 `pyproject.toml` 文件中指定的选项来覆盖 `yapf` 格式化程序的默认设置来格式化代码。
- 要使用 `.vscode` 设置,请安装 `yapf` 扩展。

### `make test`

- 测试使用`unittest`
- 支持`test_*.py``*_test.py`模式。
- 测试文件必须连接到包含测试的位置,并且必须有`__init__.py`
- 使用 `unittest` 进行测试
- 支持 `test_*.py``*_test.py` 模式。
- 测试文件必须连接到包含测试文件的位置,且连接到 `__init__.py`

### `make publish`

- 请按以下格式编写`~/.pypirc`文件。

- 请在 `~/.

0 comments on commit 687ab6b

Please sign in to comment.