A community-sourced list of papers and resources on neural simulation-based inference, covering both methodological developments and domain applications. Given the nature of the field, the list is bound to be highly incomplete -- contributions are welcome!
sbi
[Code] [Docs] [Paper]: General-purpose simulation-based inference toolkit.BayesFlow
[Code] [Docs] [Paper]: Simulation-based inference framework with a focus on amortized Bayesian workflows.sbibm
[Code] [Docs] [Paper]: Simulation-based inference benchmarking framework.swyft
[Code] [Docs] [Paper]: Official implementation of Truncated Marginal Neural Ratio Estimation (TMNRE), a hyper-efficient, simulation-based inference technique for complex data and expensive simulators.SimulationBasedInference.jl
[Code] [Docs]: Simulation-based inference in Julia.lampe
[Code] [Docs]: Likelihood-free AMortized Posterior Estimation with PyTorch.sbijax
[Code] [Paper]: Simulation-based inference in JAX.nbi
[Code] [Docs] [Paper]: Neural Posterior Estimation (NPE) package with a focus on astronomical light curves and spectra.MadMiner
[Code] [Docs] [Paper]: Machine learning–based inference toolkit for particle physics.pydelfi
[Code] [Docs] [Paper]: Early implementation of Density Estimation Likelihood-Free Inference (DELFI) with neural density estimators and adaptive acquisition of simulations.carl
[Code] [Docs] [Paper]: Early toolbox for neural network-based likelihood-free inference in Python.
- SBI Tutorial: A hands-on tutorial introducing basic SBI concepts and methods.
-
Neural Methods for Amortised Parameter Inference [arXiv]
Andrew Zammit-Mangion, Matthew Sainsbury-Dale, Raphaël Huser -
The frontier of simulation-based inference [arXiv]
Kyle Cranmer, Johann Brehmer, Gilles Louppe
- arXiv search for "simulation-based inference" or "likelihood-free inference"
- Google Scholar search for "simulation-based inference" or "likelihood-free inference"
- simulation-based-inference.org: Community resource on simulation-based inference, including an automatically-compiled list of papers.
Methodological and use-inspired papers. Listed in reverse-chronological order.
-
Low-Budget Simulation-Based Inference with Bayesian Neural Networks [arXiv]
Arnaud Delaunoy, Maxence de la Brassinne Bonardeaux, Siddharth Mishra-Sharma, Gilles Louppe -
Flow Matching for Posterior Inference with Simulator Feedback [arXiv]
Benjamin Holzschuh, Nils Thuerey -
Compositional simulation-based inference for time series [arXiv]
Manuel Gloeckler, Shoji Toyota, Kenji Fukumizu, Jakob H. Macke -
Cost-aware Simulation-based Inference [arXiv]
Ayush Bharti, Daolang Huang, Samuel Kaski, François-Xavier Briol -
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks: An Extended Investigation [arXiv]
Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev -
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [arXiv]
Antoine Wehenkel, Juan L. Gamella, Ozan Sener, Jens Behrmann, Guillermo Sapiro, Marco Cuturi, Jörn-Henrik Jacobsen -
Preconditioned Neural Posterior Estimation for Likelihood-free Inference [arXiv]
Xiaoyu Wang, Ryan P. Kelly, David J. Warne, Christopher Drovandi -
All-in-one simulation-based inference [arXiv]
Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, Jakob H. Macke -
Diffusion posterior sampling for simulation-based inference in tall data settings [arXiv]
Julia Linhart, Gabriel Victorino Cardoso, Alexandre Gramfort, Sylvain Le Corff, Pedro L. C. Rodrigues -
Fast, accurate and lightweight sequential simulation-based inference using Gaussian locally linear mappings [arXiv]
Henrik Häggström, Pedro L. C. Rodrigues, Geoffroy Oudoumanessah, Florence Forbes, Umberto Picchini -
Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference [arXiv]
Luca Masserano, Alex Shen, Michele Doro, Tommaso Dorigo, Rafael Izbicki, Ann B. Lee -
Simulation-Based Inference with Quantile Regression [arXiv]
He Jia -
Consistency Models for Scalable and Fast Simulation-Based Inference [arXiv]
Marvin Schmitt, Valentin Pratz, Ullrich Köthe, Paul-Christian Bürkner, Stefan T Radev -
Pseudo-Likelihood Inference [arXiv]
Theo Gruner, Boris Belousov, Fabio Muratore, Daniel Palenicek, Jan Peters -
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference [arXiv]
Marvin Schmitt, Stefan T. Radev, Paul-Christian Bürkner -
Direct Amortized Likelihood Ratio Estimation [arXiv]
Adam D. Cobb, Brian Matejek, Daniel Elenius, Anirban Roy, Susmit Jha -
Simulation based stacking [arXiv]
Yuling Yao, Bruno Régaldo-Saint Blancard, Justin Domke -
Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability [arXiv]
Maciej Falkiewicz, Naoya Takeishi, Imahn Shekhzadeh, Antoine Wehenkel, Arnaud Delaunoy, Gilles Louppe, Alexandros Kalousis -
Sensitivity-Aware Amortized Bayesian Inference [arXiv]
Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev -
Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [arXiv]
Marvin Schmitt, Daniel Habermann, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev -
Simulation-based Inference with the Generalized Kullback-Leibler Divergence [arXiv]
Benjamin Kurt Miller, Marco Federici, Christoph Weniger, Patrick Forré -
Data assimilation as simulation-based inference [Master thesis]
Gérôme Andry, Gilles Louppe -
A transport approach to sequential simulation-based inference [arXiv]
Paul-Baptiste Rubio, Youssef Marzouk, Matthew Parno -
Kernel-Based Tests for Likelihood-Free Hypothesis Testing [arXiv]
Patrik Róbert Gerber, Tianze Jiang, Yury Polyanskiy, Rui Sun -
Scalable inference with Autoregressive Neural Ratio Estimation [arXiv]
Noemi Anau Montel, James Alvey, Christoph Weniger -
Simulation-based inference using surjective sequential neural likelihood estimation [arXiv]
Simon Dirmeier, Carlo Albert, Fernando Perez-Cruz -
Hierarchical Neural Simulation-Based Inference Over Event Ensembles [arXiv]
Lukas Heinrich, Siddharth Mishra-Sharma, Chris Pollard, Philipp Windischhofer -
L-C2ST: Local Diagnostics for Posterior Approximations in Simulation-Based Inference [arXiv]
Julia Linhart, Alexandre Gramfort, Pedro L. C. Rodrigues -
Flow Matching for Scalable Simulation-Based Inference [arXiv]
Maximilian Dax, Jonas Wildberger, Simon Buchholz, Stephen R. Green, Jakob H. Macke, Bernhard Schölkopf -
Learning Robust Statistics for Simulation-based Inference under Model Misspecification [arXiv]
Daolang Huang, Ayush Bharti, Amauri Souza, Luigi Acerbi, Samuel Kaski -
Generalized Bayesian Inference for Scientific Simulators via Amortized Cost Estimation [arXiv]
Richard Gao, Michael Deistler, Jakob H. Macke -
Simultaneous identification of models and parameters of scientific simulators [arXiv]
Cornelius Schröder, Jakob H. Macke -
Discriminative calibration [arXiv]
Yuling Yao, Justin Domke -
Variational Inference with Coverage Guarantees [arXiv]
Yash Patel, Declan McNamara, Jackson Loper, Jeffrey Regier, Ambuj Tewari -
Disentangled Multi-Fidelity Deep Bayesian Active Learning [arXiv]
Dongxia Wu, Ruijia Niu, Matteo Chinazzi, Yian Ma, Rose Yu -
Balancing Simulation-based Inference for Conservative Posteriors [arXiv]
Arnaud Delaunoy, Benjamin Kurt Miller, Patrick Forré, Christoph Weniger, Gilles Louppe -
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models [arXiv]
Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Köthe, Paul-Christian Bürkner -
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference [arXiv]
Pablo Lemos, Adam Coogan, Yashar Hezaveh, Laurence Perreault-Levasseur -
Misspecification-robust Sequential Neural Likelihood [arXiv]
Ryan P. Kelly, David J. Nott, David T. Frazier, David J. Warne, Chris Drovandi -
A Deep Learning Method for Comparing Bayesian Hierarchical Models [arXiv]
Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, Stefan T. Radev -
Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive Models [arXiv]
Lukas Schumacher, Paul-Christian Bürkner, Andreas Voss, Ullrich Köthe, Stefan T. Radev -
Validation Diagnostics for SBI algorithms based on Normalizing Flows [arXiv]
Julia Linhart, Alexandre Gramfort, Pedro L. C. Rodrigues -
Monte Carlo Techniques for Addressing Large Errors and Missing Data in Simulation-based Inference [arXiv]
Bingjie Wang, Joel Leja, Ashley Villar, Joshua S. Speagle -
Likelihood-free hypothesis testing [arXiv]
Patrik Róbert Gerber, Yury Polyanskiy -
Maximum Likelihood Learning of Energy-Based Models for Simulation-Based Inference [arXiv]
Pierre Glaser, Michael Arbel, Arnaud Doucet, Arthur Gretton -
Efficient identification of informative features in simulation-based inference [arXiv]
Jonas Beck, Michael Deistler, Yves Bernaerts, Jakob Macke, Philipp Berens -
Robust Neural Posterior Estimation and Statistical Model Criticism [arXiv]
Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, Sebastian M Schmon -
Contrastive Neural Ratio Estimation [arXiv]
Benjamin Kurt Miller, Christoph Weniger, Patrick Forré -
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models [arXiv]
Louis Sharrock, Jack Simons, Song Liu, Mark Beaumont -
Truncated proposals for scalable and hassle-free simulation-based inference [arXiv]
Michael Deistler, Pedro J Goncalves, Jakob H Macke -
New Machine Learning Techniques for Simulation-Based Inference: InferoStatic Nets, Kernel Score Estimation, and Kernel Likelihood Ratio Estimation [arXiv]
Kyoungchul Kong, Konstantin T. Matchev, Stephen Mrenna, Prasanth Shyamsundar -
Compositional Score Modeling for Simulation-based Inference [arXiv]
Tomas Geffner, George Papamakarios, Andriy Mnih -
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference [arXiv]
Patrick Cannon, Daniel Ward, Sebastian M. Schmon -
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation [arXiv]
Arnaud Delaunoy, Joeri Hermans, François Rozet, Antoine Wehenkel, Gilles Louppe -
Bayesian model comparison for simulation-based inference [arXiv]
A. Spurio Mancini, M. M. Docherty, M. A. Price, J. D. McEwen -
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization [arXiv]
Lorenzo Pacchiardi, Ritabrata Dutta -
Simulation-Based Inference with Waldo: Confidence Regions by Leveraging Prediction Algorithms or Posterior Estimators for Inverse Problems [arXiv]
Luca Masserano, Tommaso Dorigo, Rafael Izbicki, Mikael Kuusela, Ann B. Lee -
Learning Optimal Test Statistics in the Presence of Nuisance Parameters [arXiv]
Lukas Heinrich -
GATSBI: Generative Adversarial Training for Simulation-Based Inference [arXiv]
Poornima Ramesh, Jan-Matthis Lueckmann, Jan Boelts, Álvaro Tejero-Cantero, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke -
Variational methods for simulation-based inference [arXiv]
Manuel Glöckler, Michael Deistler, Jakob H. Macke -
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap [arXiv]
Charita Dellaporta, Jeremias Knoblauch, Theodoros Damoulas, François-Xavier Briol -
Flexible and efficient simulation-based inference for models of decision-making [bioRxiv]
Jan Boelts, Jan-Matthis Lueckmann, Richard Gao, Jakob H. Macke -
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks [arXiv]
Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev -
Group equivariant neural posterior estimation [arXiv]
Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Deistler, Bernhard Schölkopf, Jakob H. Macke -
A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful [arXiv]
Joeri Hermans, Arnaud Delaunoy, François Rozet, Antoine Wehenkel, Volodimir Begy, Gilles Louppe -
Arbitrary Marginal Neural Ratio Estimation for Simulation-based Inference [arXiv]
François Rozet, Gilles Louppe -
Likelihood-Free Frequentist Inference: Confidence Sets with Correct Conditional Coverage [arXiv]
Niccolò Dalmasso, Luca Masserano, David Zhao, Rafael Izbicki, Ann B. Lee -
Truncated Marginal Neural Ratio Estimation [arXiv] [Code]
Benjamin Kurt Miller, Alex Cole, Patrick Forré, Gilles Louppe, Christoph Weniger -
MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood Inference from Sampled Trajectories [arXiv]
Giulio Isacchini, Natanael Spisak, Armita Nourmohammad, Thierry Mora, Aleksandra M. Walczak -
Simulation-Based Inference with Approximately Correct Parameters via Maximum Entropy [arXiv]
Rainier Barrett, Mehrad Ansari, Gourab Ghoshal, Andrew D White -
Sequential Neural Posterior and Likelihood Approximation [arXiv]
Samuel Wiqvist, Jes Frellsen, Umberto Picchini -
Diagnostics for Conditional Density Models and Bayesian Inference Algorithms [arXiv]
David Zhao, Niccolò Dalmasso, Rafael Izbicki, Ann B. Lee -
HNPE: Leveraging Global Parameters for Neural Posterior Estimation [arXiv]
Pedro L. C. Rodrigues, Thomas Moreau, Gilles Louppe, Alexandre Gramfort -
Benchmarking Simulation-Based Inference [arXiv]
Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke -
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks [arXiv]
Niall Jeffrey, Benjamin D. Wandelt -
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference [arXiv]
Maxime Vandegar, Michael Kagan, Antoine Wehenkel, Gilles Louppe -
Neural Approximate Sufficient Statistics for Implicit Models [arXiv]
Yanzhi Chen, Dinghuai Zhang, Michael Gutmann, Aaron Courville, Zhanxing Zhu -
Amortized Bayesian Model Comparison With Evidential Deep Learning [arXiv]
Stefan T. Radev, Marco D'Alessandro, Ulf K. Mertens, Andreas Voss, Ullrich Köthe, Paul-Christian Bürkner -
BayesFlow: Learning Complex Stochastic Models With Invertible Neural Networks [arXiv]
Stefan T. Radev, Ulf K. Mertens, Andreass Voss, Lynton Ardizzone, Ullrich Köthe -
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems [arXiv]
Hans Kersting, Nicholas Krämer, Martin Schiegg, Christian Daniel, Michael Tiemann, Philipp Hennig -
On Contrastive Learning for Likelihood-free Inference [arXiv]
Conor Durkan, Iain Murray, George Papamakarios -
Automatic Posterior Transformation for Likelihood-Free Inference [arXiv]
David S. Greenberg, Marcel Nonnenmacher, Jakob H. Macke -
Likelihood-free MCMC with Amortized Approximate Ratio Estimators [arXiv]
Joeri Hermans, Volodimir Begy, Gilles Louppe -
Dynamic Likelihood-free Inference via Ratio Estimation (DIRE) [arXiv]
Traiko Dinev, Michael U. Gutmann -
Analyzing Inverse Problems with Invertible Neural Networks [arXiv]
Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, Ullrich Köthe -
Likelihood-free inference with an improved cross-entropy estimator [arXiv]
Markus Stoye, Johann Brehmer, Gilles Louppe, Juan Pavez, Kyle Cranmer -
Mining gold from implicit models to improve likelihood-free inference [arXiv] [Code]
Johann Brehmer, Gilles Louppe, Juan Pavez, Kyle Cranmer -
Likelihood-free inference with emulator networks [arXiv]
Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, Jakob H. Macke -
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows [arXiv] [Code]
George Papamakarios, David C. Sterratt, Iain Murray -
A Guide to Constraining Effective Field Theories with Machine Learning [arXiv]
Johann Brehmer, Kyle Cranmer, Gilles Louppe, Juan Pavez -
Fast ε-free Inference of Simulation Models with Bayesian Conditional Density Estimation [arXiv]
George Papamakarios, Iain Murray -
Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv]
Kyle Cranmer, Juan Pavez, Gilles Louppe
Domain application of neural simulation-based inference. Papers listed in reverse-chronological order.
-
Hybrid Summary Statistics [arXiv]
T. Lucas Makinen, Ce Sui, Benjamin D. Wandelt, Natalia Porqueres, Alan Heavens -
What to do when things get crowded? Scalable joint analysis of overlapping gravitational wave signals [arXiv]
James Alvey, Uddipta Bhardwaj, Samaya Nissanke, Christoph Weniger -
Leveraging Time-Dependent Instrumental Noise for LISA SGWB Analysis [arXiv]
James Alvey, Uddipta Bhardwaj, Valerie Domcke, Mauro Pieroni, Christoph Weniger -
Rapid Likelihood Free Inference of Compact Binary Coalescences using Accelerated Hardware [arXiv]
Deep Chatterjee et al -
Kilonova Light Curve Parameter Estimation Using Likelihood-Free Inference [arXiv]
Malina Desai, Deep Chatterjee, Sahil Jhawar, Philip Harris, Erik Katsavounidis, Michael Coughlin -
Learning Optimal and Interpretable Summary Statistics of Galaxy Catalogs with SBI [arXiv]
Kai Lehman, Sven Krippendorf, Jochen Weller, Klaus Dolag -
Simulation-based inference of the 2D ex-situ stellar mass fraction distribution of galaxies using variational autoencoders [arXiv]
Eirini Angeloudi et al -
Constraining the dispersion measure redshift relation with simulation-based inference [arXiv]
Koustav Konar, Robert Reischke, Steffen Hagstotz, Andrina Nicola, Hendrik Hildebrandt -
Reconstructing galaxy star formation histories from COSMOS2020 photometry using simulation-based inference [arXiv]
G. Aufort et al -
Constraining Cosmology with Simulation-based inference and Optical Galaxy Cluster Abundance [arXiv]
Moonzarin Reza, Yuanyuan Zhang, Camille Avestruz, Louis E. Strigari, Simone Shevchuk, Francisco Villaescusa-Navarro -
Population-level Dark Energy Constraints from Strong Gravitational Lensing using Simulation-Based Inference [arXiv]
Sreevani Jarugula, Brian Nord, Abhijith Gandrakota, Aleksandra Ćiprijanović -
Accounting for Selection Effects in Supernova Cosmology with Simulation-Based Inference and Hierarchical Bayesian Modelling [arXiv]
Benjamin M. Boyd, Matthew Grayling, Stephen Thorp, Kaisey S. Mandel -
Fast and Flexible Inference Framework for Continuum Reverberation Mapping using Simulation-based Inference with Deep Learning [arXiv]
Jennifer I-Hsiu Li et al -
Optimal Neural Summarisation for Full-Field Weak Lensing Cosmological Implicit Inference [arXiv]
Denise Lanzieri et al -
ABCMB: Deep Delensing Assisted Likelihood-Free Inference from CMB Polarization Maps [arXiv]
Kai Yi, Yanan Fan, Jan Hamann, Pietro Liò, Yuguang Wang -
Silkscreen: Direct Measurements of Galaxy Distances from Survey Image Cutouts [arXiv]
Tim B. Miller, Imad Pasha, Ava Polzin, Pieter van Dokkum -
Deriving the star formation histories of galaxies from spectra with simulation-based inference [arXiv]
Patricia Iglesias-Navarro et al -
Constraining Cosmological Parameters with Needlet Internal Linear Combination Maps II: Likelihood-Free Inference on NILC Power Spectra [arXiv]
Kristen M. Surrao, J. Colin Hill -
Simulation-based Inference for Gravitational-waves from Intermediate-Mass Binary Black Holes in Real Noise [arXiv]
Vivien Raymond, Sama Al-Shammari, Alexandre Göttel -
Simulation-based inference of radio millisecond pulsars in globular clusters [arXiv]
Joanna Berteaud, Christopher Eckner, Francesca Calore, Maïca Clavel, Daryl Haggard -
Learning the Universe: Cosmological and Astrophysical Parameter Inference with Galaxy Luminosity Functions and Colours [arXiv]
Christopher C. Lovell et al -
Combining summary statistics with simulation-based inference for the 21 cm signal from the Epoch of Reionization [arXiv]
Benoit Semelin, Romain Mériot, Ashutosh Mishra, David Cornu -
Domain-Adaptive Neural Posterior Estimation for Strong Gravitational Lens Analysis [arXiv]
Paxson Swierc, Marcos Tamargo-Arizmendi, Aleksandra Ćiprijanović, Brian D. Nord -
Mean-Field Simulation-Based Inference for Cosmological Initial Conditions [arXiv]
Oleg Savchenko, Florian List, Guillermo Franco Abellán, Noemi Anau Montel, Christoph Weniger -
Field-level cosmological model selection: field-level simulation-based inference for Stage IV cosmic shear can distinguish dynamical dark energy [arXiv]
A. Spurio Mancini, K. Lin, J. D. McEwen -
Simulation-Based Inference Benchmark for LSST Weak Lensing Cosmology [arXiv]
Justine Zeghal et al -
Cosmology from HSC Y1 Weak Lensing with Combined Higher-Order Statistics and Simulation-based Inference [arXiv]
Camila P. Novaes et al -
Fisher's Mirage: Noise Tightening of Cosmological Constraints in Simulation-Based Inference [arXiv]
Christopher Wilson, Rachel Bean -
Simulation-based Inference for Gravitational-waves from Intermediate-Mass Binary Black Holes in Real Noise [arXiv]
Vivien Raymond, Sama Al-Shammari, Alexandre Göttel -
Efficient Massive Black Hole Binary parameter estimation for LISA using Sequential Neural Likelihood [arXiv]
Iván Martín Vílchez, Carlos F. Sopuerta -
Simulation-based inference of radio millisecond pulsars in globular clusters [arXiv]
Joanna Berteaud, Christopher Eckner, Francesca Calore, Maïca Clavel, Daryl Haggard -
Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps II. Cosmological results [arXiv]
M. Gatti, G. Campailla, N. Jeffrey, L. Whiteway, A. Porredon, J. Prat, J. Williamson, M. Raveri, B. Jain, V. Ajani, C. Zhou, J. Blazek, D. Anbajagane, S. Samuroff, T. Kacprzak, A. Alarcon, A. Amon, K. Bechtol, M. Becker, G. Bernstein, A. Campos, C. Chang, R. Chen -
A Parameter-Masked Mock Data Challenge for Beyond-Two-Point Galaxy Clustering Statistics [arXiv]
Beyond-2pt Collaboration, :, Elisabeth Krause, Yosuke Kobayashi, Andrés N. Salcedo, Mikhail M. Ivanov, Tom Abel, Kazuyuki Akitsu, Raul E. Angulo, Giovanni Cabass, Sofia Contarini, Carolina Cuesta-Lazaro, ChangHoon Hahn, Nico Hamaus, Donghui Jeong, Chirag Modi, Nhat-Minh Nguyen, Takahiro Nishimichi, Enrique Paillas, Marcos Pellejero Ibañez, Oliver H. E. Philcox, Alice Pisani, Fabian Schmidt, Satoshi Tanaka, Giovanni Verza -
KiDS-SBI: Simulation-Based Inference Analysis of KiDS-1000 Cosmic Shear [arXiv]
Maximilian von Wietersheim-Kramsta, Kiyam Lin, Nicolas Tessore, Benjamin Joachimi, Arthur Loureiro, Robert Reischke, Angus H. Wright -
A Strong Gravitational Lens Is Worth a Thousand Dark Matter Halos: Inference on Small-Scale Structure Using Sequential Methods [arXiv]
Sebastian Wagner-Carena, Jaehoon Lee, Jeffrey Pennington, Jelle Aalbers, Simon Birrer, Risa H. Wechsler -
Simulation-based inference of black hole ringdowns in the time domain [arXiv]
Costantino Pacilio, Swetha Bhagwat, Roberto Cotesta -
How much information can be extracted from galaxy clustering at the field level? [arXiv]
Nhat-Minh Nguyen, Fabian Schmidt, Beatriz Tucci, Martin Reinecke, Andrija Kostić -
SIDE-real: Supernova Ia Dust Extinction with truncated marginal neural ratio estimation applied to real data [arXiv]
Konstantin Karchev, Matthew Grayling, Benjamin M. Boyd, Roberto Trotta, Kaisey S. Mandel, Christoph Weniger -
Tuning neural posterior estimation for gravitational wave inference [arXiv]
Alex Kolmus, Justin Janquart, Tomasz Baka, Twan van Laarhoven, Chris Van Den Broeck, Tom Heskes -
Dark Energy Survey Year 3 results: likelihood-free, simulation-based wCDM inference with neural compression of weak-lensing map statistics [arXiv]
N. Jeffrey, L. Whiteway, M. Gatti, J. Williamson, J. Alsing, A. Porredon, J. Prat, C. Doux, B. Jain, C. Chang, T. -Y. Cheng, T. Kacprzak, P. Lemos, A. Alarcon, A. Amon, K. Bechtol, M. R. Becker, G. M. Bernstein, A. Campos, A. Carnero Rosell, R. Chen, A. Choi, J. DeRose, A. Drlica-Wagner, K. Eckert -
Simulation-Based Inference of the sky-averaged 21-cm signal from CD-EoR with REACH [arXiv]
Anchal Saxena, P. Daniel Meerburg, Christoph Weniger, Eloy de Lera Acedo, Will Handley -
Exploring the role of the halo mass function for inferring astrophysical parameters during reionisation [arXiv]
Bradley Greig, David Prelogović, Jordan Mirocha, Yuxiang Qin, Yuan-Sen Ting, Andrei Mesinger -
SimBIG: Cosmological Constraints using Simulation-Based Inference of Galaxy Clustering with Marked Power Spectra [arXiv]
Elena Massara, ChangHoon Hahn, Michael Eickenberg, Shirley Ho, Jiamin Hou, Pablo Lemos, Chirag Modi, Azadeh Moradinezhad Dizgah, Liam Parker, Bruno Régaldo-Saint Blancard -
Inferring astrophysical parameters using the 2D cylindrical power spectrum from reionisation [arXiv]
Bradley Greig, David Prelogović, Yuxiang Qin, Yuan-Sen Ting, Andrei Mesinger -
Fast likelihood-free inference in the LSS Stage IV era [arXiv]
Guillermo Franco Abellán, Guadalupe Cañas Herrera, Matteo Martinelli, Oleg Savchenko, Davide Sciotti, Christoph Weniger -
Simulation-based Bayesian inference of protoplanetary disk winds from forbidden line profiles [arXiv]
Ahmad Nemer, ChangHoon Hahn, Jiaxuan Li, Peter Melchior, Jeremy Goodman -
Neural Simulation-Based Inference of the Neutron Star Equation of State directly from Telescope Spectra [arXiv]
Len Brandes, Chirag Modi, Aishik Ghosh, Delaney Farrell, Lee Lindblom, Lukas Heinrich, Andrew W. Steiner, Fridolin Weber, Daniel Whiteson -
Applying Simulation-Based Inference to Spectral and Spatial Information from the Galactic Center Gamma-Ray Excess [arXiv]
Katharena Christy, Eric J. Baxter, Jason Kumar -
SIMBIG : Cosmological Constraints from the Redshift-Space Galaxy Skew Spectra [arXiv]
Jiamin Hou, Azadeh Moradinezhad Dizgah, ChangHoon Hahn, Michael Eickenberg, Shirley Ho, Pablo Lemos, Elena Massara, Chirag Modi, Liam Parker, Bruno Régaldo-Saint Blancard -
Inferring galaxy cluster masses from cosmic microwave background lensing with neural simulation based inference [arXiv]
Eric J. Baxter, Shivam Pandey -
Simulation-based inference of deep fields: galaxy population model and redshift distributions [arXiv]
Beatrice Moser, Tomasz Kacprzak, Silvan Fischbacher, Alexandre Refregier, Dominic Grimm, Luca Tortorelli -
Simulation-Based Inference with Neural Posterior Estimation applied to X-ray spectral fitting: Demonstration of working principles down to the Poisson regime [arXiv]
Didier Barret, Simon Dupourqué -
Optimal, fast, and robust inference of reionization-era cosmology with the 21cmPIE-INN [arXiv]
Benedikt Schosser, Caroline Heneka, Tilman Plehn -
Isolated Pulsar Population Synthesis with Simulation-Based Inference [arXiv]
Vanessa Graber, Michele Ronchi, Celsa Pardo-Araujo, Nanda Rea -
Constraints on the Evolution of the Ionizing Background and Ionizing Photon Mean Free Path at the End of Reionization [arXiv]
Frederick B. Davies et al -
Inferring Atmospheric Properties of Exoplanets with Flow Matching and Neural Importance Sampling [arXiv]
Timothy D. Gebhard, Jonas Wildberger, Maximilian Dax, Daniel Angerhausen, Sascha P. Quanz, Bernhard Schölkopf -
Efficient Parameter Inference for Gravitational Wave Signals in the Presence of Transient Noises Using Normalizing Flow [arXiv]
Tian-Yang Sun, Chun-Yu Xiong, Shang-Jie Jin, Yu-Xin Wang, Jing-Fei Zhang, Xin Zhang -
Optimizing Likelihood-Free Inference using Self-Supervised Neural Symmetry Embeddings [arXiv]
Deep Chatterjee, Philip C. Harris, Maanas Goel, Malina Desai, Michael W. Coughlin, Erik Katsavounidis -
Learning Reionization History from Quasars with Simulation-Based Inference [arXiv]
Huanqing Chen, Joshua Speagle, Keir K. Rogers -
Simulation Based Inference of BNS Kilonova Properties: A Case Study with AT2017gfo [arXiv]
Phelipe A. Darc, Clecio R. Bom, Bernardo M. O. Fraga, Charlie D. Kilpatrick -
Bayesian Simulation-based Inference for Cosmological Initial Conditions [arXiv]
Florian List, Noemi Anau Montel, Christoph Weniger -
Simulation-based Inference of Reionization Parameters from 3D Tomographic 21 cm Light-cone Images -- II: Application of Solid Harmonic Wavelet Scattering Transform [arXiv]
Xiaosheng Zhao, Yi Mao, Shifan Zuo, Benjamin D. Wandelt -
Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps I: validation on simulations [arXiv]
M. Gatti, N. Jeffrey, L. Whiteway, J. Williamson, B. Jain, V. Ajani, D. Anbajagane, G. Giannini, C. Zhou, A. Porredon, J. Prat, M. Yamamoto, J. Blazek, T. Kacprzak, S. Samuroff, A. Alarcon, A. Amon, K. Bechtol, M. Becker, G. Bernstein, A. Campos, C. Chang, R. Chen, A. Choi, C. Davis , et al. -
SimBIG: Field-level Simulation-Based Inference of Galaxy Clustering [arXiv]
Pablo Lemos, Liam Parker, ChangHoon Hahn, Shirley Ho, Michael Eickenberg, Jiamin Hou, Elena Massara, Chirag Modi, Azadeh Moradinezhad Dizgah, Bruno Regaldo-Saint Blancard, David Spergel -
SIMBIG: Galaxy Clustering Analysis with the Wavelet Scattering Transform [arXiv]
Bruno Régaldo-Saint Blancard, ChangHoon Hahn, Shirley Ho, Jiamin Hou, Pablo Lemos, Elena Massara, Chirag Modi, Azadeh Moradinezhad Dizgah, Liam Parker, Yuling Yao, Michael Eickenberg -
SIMBIG: The First Cosmological Constraints from the Non-Linear Galaxy Bispectrum [arXiv]
ChangHoon Hahn, Michael Eickenberg, Shirley Ho, Jiamin Hou, Pablo Lemos, Elena Massara, Chirag Modi, Azadeh Moradinezhad Dizgah, Liam Parker, Bruno Régaldo-Saint Blancard -
Field-level simulation-based inference with galaxy catalogs: the impact of systematic effects [arXiv]
Natalí S. M. de Santi, Francisco Villaescusa-Navarro, L. Raul Abramo, Helen Shao, Lucia A. Perez, Tiago Castro, Yueying Ni, Christopher C. Lovell, Elena Hernandez-Martinez, Federico Marinacci, David N. Spergel, Klaus Dolag, Lars Hernquist, Mark Vogelsberger -
HaloFlow I: Neural Inference of Halo Mass from Galaxy Photometry and Morphology [arXiv]
ChangHoon Hahn, Connor Bottrell, Khee-Gan Lee -
EFTofLSS meets simulation-based inference: σ8 from biased tracers [arXiv]
Beatriz Tucci, Fabian Schmidt -
Sensitivity Analysis of Simulation-Based Inference for Galaxy Clustering [arXiv]
Chirag Modi, Shivam Pandey, Matthew Ho, ChangHoon Hahn, Bruno Regaldo-Saint Blancard, Benjamin Wandelt -
Hybrid SBI or How I Learned to Stop Worrying and Learn the Likelihood [arXiv]
Chirag Modi, Oliver H. E. Philcox -
Simulation-based Inference for Exoplanet Atmospheric Retrieval: Insights from winning the Ariel Data Challenge 2023 using Normalizing Flows [arXiv]
Mayeul Aubin et al -
Simulation-based inference for stochastic gravitational wave background data analysis [arXiv]
James Alvey, Uddipta Bhardwaj, Valerie Domcke, Mauro Pieroni, Christoph Weniger -
What to do when things get crowded? Scalable joint analysis of overlapping gravitational wave signals [arXiv]
James Alvey, Uddipta Bhardwaj, Samaya Nissanke, Christoph Weniger -
Neural Posterior Estimation with guaranteed exact coverage: the ringdown of GW150914 [arXiv]
Marco Crisostomi, Kallol Dey, Enrico Barausse, Roberto Trotta -
The likelihood of the 21-cm power spectrum [arXiv]
David Prelogović, Andrei Mesinger -
The angular power spectrum of gravitational-wave transient sources as a probe of the large-scale structure [arXiv]
Yanyan Zheng, Nikolaos Kouvatsos, Jacob Golomb, Marco Cavaglià, Arianna I. Renzini, Mairi Sakellariadou -
SBI++: Flexible, Ultra-fast Likelihood-free Inference Customized for Astronomical Application [arXiv]
Bingjie Wang, Joel Leja, V. Ashley Villar, Joshua S. Speagle -
Peregrine: Sequential simulation-based inference for gravitational wave signals [arXiv]
Uddipta Bhardwaj, James Alvey, Benjamin Kurt Miller, Samaya Nissanke, Christoph Weniger -
Albatross: A scalable simulation-based inference pipeline for analysing stellar streams in the Milky Way [arXiv]
James Alvey, Mathis Gerdes, Christoph Weniger -
Investigating the turbulent hot gas in X-COP galaxy clusters [arXiv]
Simon Dupourqué, Nicolas Clerc, Etienne Pointecouteau, Dominique Eckert, Stefano Ettori, Franco Vazza -
Constraining the X-ray heating and reionization using 21-cm power spectra with Marginal Neural Ratio Estimation [arXiv]
Anchal Saxena, Alex Cole, Simon Gazagnes, P. Daniel Meerburg, Christoph Weniger, Samuel J. Witte -
Neural posterior estimation for exoplanetary atmospheric retrieval [arXiv]
Malavika Vasist, François Rozet, Olivier Absil, Paul Mollière, Evert Nasedkin, Gilles Louppe -
Debiasing Standard Siren Inference of the Hubble Constant with Marginal Neural Ratio Estimation [arXiv]
Samuel Gagnon-Hartman, John Ruan, Daryl Haggard -
Calibrating cosmological simulations with implicit likelihood inference using galaxy growth observables [arXiv]
Yongseok Jo et al -
DIGS: Deep Inference of Galaxy Spectra with Neural Posterior Estimation [arXiv]
Gourav Khullar, Brian Nord, Aleksandra Ciprijanovic, Jason Poh, Fei Xu -
Detection is truncation: studying source populations with truncated marginal neural ratio estimation [arXiv]
Noemi Anau Montel, Christoph Weniger -
SIMBIG : A Forward Modeling Approach To Analyzing Galaxy Clustering [arXiv]
ChangHoon Hahn et al -
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference [arXiv]
Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf -
One never walks alone: the effect of the perturber population on subhalo measurements in strong gravitational lenses [arXiv]
Adam Coogan, Noemi Anau Montel, Konstantin Karchev, Meiert W. Grootes, Francesco Nattino, Christoph Weniger -
SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation [arXiv]
Konstantin Karchev, Roberto Trotta, Christoph Weniger -
Inferring subhalo effective density slopes from strong lensing observations with neural likelihood-ratio estimation [arXiv]
Gemma Zhang, Siddharth Mishra-Sharma, Cora Dvorkin -
Uncovering dark matter density profiles in dwarf galaxies with graph neural networks [arXiv]
Tri Nguyen, Siddharth Mishra-Sharma, Reuel Williams, Lina Necib -
Estimating Cosmological Constraints from Galaxy Cluster Abundance using Simulation-Based Inference [arXiv]
Moonzarin Reza, Yuanyuan Zhang, Brian Nord, Jason Poh, Aleksandra Ciprijanovic, Louis Strigari -
Neural Posterior Estimation with Differentiable Simulators [arXiv]
Justine Zeghal, François Lanusse, Alexandre Boucaud, Benjamin Remy, Eric Aubourg -
Towards reconstructing the halo clustering and halo mass function of N-body simulations using neural ratio estimation [arXiv]
Androniki Dimitriou, Christoph Weniger, Camila A. Correa -
Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation [arXiv]
Noemi Anau Montel, Adam Coogan, Camila Correa, Konstantin Karchev, Christoph Weniger -
Implicit Likelihood Inference of Reionization Parameters from the 21 cm Power Spectrum [arXiv]
Xiaosheng Zhao, Yi Mao, Benjamin D. Wandelt -
Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation [arXiv]
ChangHoon Hahn, Peter Melchior -
Simulation-Based Inference of Strong Gravitational Lensing Parameters [arXiv]
Ronan Legin, Yashar Hezaveh, Laurence Perreault Levasseur, Benjamin Wandelt -
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation [arXiv]
Alex Cole, Benjamin Kurt Miller, Samuel J. Witte, Maxwell X. Cai, Meiert W. Grootes, Francesco Nattino, Christoph Weniger -
A neural simulation-based inference approach for characterizing the Galactic Center γ-ray excess [arXiv]
Siddharth Mishra-Sharma, Kyle Cranmer -
Inferring dark matter substructure with astrometric lensing beyond the power spectrum [arXiv]
Siddharth Mishra-Sharma -
Approximate Bayesian Neural Doppler Imaging [arXiv]
A. Asensio Ramos, C. Diaz Baso, O. Kochukhov -
Lossless, Scalable Implicit Likelihood Inference for Cosmological Fields [arXiv]
T. Lucas Makinen, Tom Charnock, Justin Alsing, Benjamin D. Wandelt -
Real-time gravitational-wave science with neural posterior estimation [arXiv]
Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf -
Real-Time Likelihood-Free Inference of Roman Binary Microlensing Events with Amortized Neural Posterior Estimation [arXiv]
Keming Zhang, Joshua S. Bloom, B. Scott Gaudi, Francois Lanusse, Casey Lam, Jessica R. Lu -
Towards constraining warm dark matter with stellar streams through neural simulation-based inference [arXiv]
Joeri Hermans, Nilanjan Banik, Christoph Weniger, Gianfranco Bertone, Gilles Louppe -
Lightning-Fast Gravitational Wave Parameter Inference through Neural Amortization [arXiv]
Arnaud Delaunoy, Antoine Wehenkel, Tanja Hinderer, Samaya Nissanke, Christoph Weniger, Andrew R. Williamson, Gilles Louppe -
The sum of the masses of the Milky Way and M31: a likelihood-free inference approach [arXiv]
Pablo Lemos, Niall Jeffrey, Lorne Whiteway, Ofer Lahav, Niam I Libeskind, Yehuda Hoffman -
Likelihood-free inference with neural compression of DES SV weak lensing map statistics [arXiv]
Niall Jeffrey, Justin Alsing, François Lanusse -
Mining for Dark Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning [arXiv]
Johann Brehmer, Siddharth Mishra-Sharma, Joeri Hermans, Gilles Louppe, Kyle Cranmer -
Fast likelihood-free cosmology with neural density estimators and active learning [arXiv]
Justin Alsing, Tom Charnock, Stephen Feeney, Benjamin Wandelt
-
Advancing Tools for Simulation-Based Inference [arXiv]
Henning Bahl, Victor Bresó, Giovanni De Crescenzo, Tilman Plehn -
Constraining the Higgs Potential with Neural Simulation-based Inference for Di-Higgs Production [arXiv]
Radha Mastandrea, Benjamin Nachman, Tilman Plehn -
Constraining the Higgs Potential with Neural Simulation-based Inference for Di-Higgs Production [arXiv]
Radha Mastandrea, Benjamin Nachman, Tilman Plehn -
Simulation-based inference in the search for CP violation in leptonic WH production [arXiv]
Ricardo Barrué, Patricia Conde-Muíño, Valerio Dao, Rui Santos -
Reconstructing axion-like particles from beam dumps with simulation-based inference [arXiv]
Alessandro Morandini, Torben Ferber, Felix Kahlhoefer -
Measuring QCD Splittings with Invertible Networks [arXiv]
Sebastian Bieringer, Anja Butter, Theo Heimel, Stefan Höche, Ullrich Köthe, Tilman Plehn, Stefan T. Radev -
Simulation-based inference methods for particle physics [arXiv]
Johann Brehmer, Kyle Cranmer -
MadMiner: Machine learning-based inference for particle physics [arXiv]
Johann Brehmer, Felix Kling, Irina Espejo, Kyle Cranmer -
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale [arXiv]
Atılım Güneş Baydin et al -
Constraining Effective Field Theories with Machine Learning [arXiv]
Johann Brehmer, Kyle Cranmer, Gilles Louppe, Juan Pavez
-
Approximation of Intractable Likelihood Functions in Systems Biology via Normalizing Flows [arXiv]
Vincent D. Zaballa, Elliot E. Hui -
Methods and considerations for estimating parameters in biophysically detailed neural models with simulation based inference [bioRxiv]
Nicholas Tolley, Pedro L. C. Rodrigues, Alexandre Gramfort, Stephanie Jones -
A General Integrative Neurocognitive Modeling Framework to Jointly Describe EEG and Decision-making on Single Trials [Paper]
Amin Ghaderi-Kangavari, Jamal Amani Rad, Michael D. Nunez -
Simulation-based Inference for Model Parameterization on Analog Neuromorphic Hardware [arXiv]
Jakob Kaiser, Raphael Stock, Eric Müller, Johannes Schemmel, Sebastian Schmitt -
Simulation-based inference for efficient identification of generative models in computational connectomics [bioRxiv]
Jan Boelts, Philipp Harth, Richard Gao, Daniel Udvary, Felipe Yáñez, Daniel Baum, Hans-Christian Hege, Marcel Oberlaender, Jakob H. Macke -
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience [Paper]
Alexander Fengler, Lakshmi N Govindarajan, Tony Chen, Michael J Frank -
Training deep neural density estimators to identify mechanistic models of neural dynamics [Paper]
Pedro J Gonçalves et al -
Mental speed is high until age 60 as revealed by analysis of over a million participants [Paper]
Mischa von Krause, Stefan T. Radev, Andreas Voss -
Amortized Bayesian Inference for Models of Cognition [arXiv]
Stefan T. Radev, Andreas Voss, Eva Marie Wieschen, Paul-Christian Bürkner
-
Simulation-Based Inference of Developmental EEG Maturation with the Spectral Graph Model [arXiv]
Danilo Bernardo, Xihe Xie, Parul Verma, Jonathan Kim, Virginia Liu, Ye Wu, Pew-Thian Yap, Srikantan Nagarajan, Ashish Raj -
AI-powered simulation-based inference of a genuinely spatial-stochastic model of early mouse embryogenesis [arXiv]
Michael A. Ramirez-Sierra, Thomas R. Sokolowski -
Modeling the Age Pattern of Fertility: An Individual-Level Approach [arXiv]
Daniel Ciganda, Nicolas Todd -
Simulation-based Inference for Cardiovascular Models [arXiv]
Antoine Wehenkel, Jens Behrmann, Andrew C. Miller, Guillermo Sapiro, Ozan Sener, Marco Cuturi, Jörn-Henrik Jacobsen -
Mutation rate, selection, and epistasis inferred from RNA virus haplotypes via neural posterior estimation [bioRxiv]
Itamar Caspi, Moran Meir, Nadav Ben Nun, Uri Yakhini, Adi Stern, Yoav Ram -
Simulation-Based Inference for Whole-Brain Network Modeling of Epilepsy using Deep Neural Density Estimators [medRxiv]
Meysam Hashemi, Anirudh N. Vattikonda, Jayant Jha, Viktor Sip, Marmaduke M. Woodman, Fabrice Bartolomei, Viktor K. Jirsa -
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany [arXiv]
Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa M. Eichel, Till Bärnighausen, Ullrich Köthe -
Simulation-Based Inference for Global Health Decisions [arXiv]
Christian Schroeder de Witt et al
Applications where multiple papers could not be grouped under a single heading.
-
Simulation-based inference of single-molecule experiments [arXiv]
Lars Dingeldein, Pilar Cossio, Roberto Covino -
Full-waveform earthquake source inversion using simulation-based inference [arXiv]
A. A. Saoulis, D. Piras, A. Spurio Mancini, B. Joachimi, A. M. G. Ferreira -
Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [arXiv]
Vladimir Starostin et al -
A Comprehensive Guide to Simulation-based Inference in Computational Biology [arXiv]
Xiaoyu Wang, Ryan P. Kelly, Adrianne L. Jenner, David J. Warne, Christopher Drovandi -
SB-ETAS: using simulation based inference for scalable, likelihood-free inference for the ETAS model of earthquake occurrences [arXiv]
Samuel Stockman, Daniel J. Lawson, Maximilian J. Werner -
Simulation-Based Inference of Surface Accumulation and Basal Melt Rates of an Antarctic Ice Shelf from Isochronal Layers [arXiv]
Guy Moss, Vjeran Višnjević, Olaf Eisen, Falk M. Oraschewski, Cornelius Schröder, Jakob H. Macke, Reinhard Drews -
Amortized Bayesian Decision Making for simulation-based models [arXiv]
Mila Gorecki, Jakob H. Macke, Michael Deistler -
Optimal simulation-based Bayesian decisions [arXiv]
Justin Alsing, Thomas D. P. Edwards, Benjamin Wandelt -
Graph-informed simulation-based inference for models of active matter [arXiv]
Namid R. Stillman, Silke Henkes, Roberto Mayor, Gilles Louppe -
Simulation-based inference of single-molecule force spectroscopy [arXiv]
Lars Dingeldein, Pilar Cossio, Roberto Covino -
Normalizing flows for likelihood-free inference with fusion simulations [Paper]
C S Furia, R M Churchill -
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows [arXiv]
Maksim Zhdanov, Lisa Randolph, Thomas Kluge, Motoaki Nakatsutsumi, Christian Gutt, Marina Ganeva, Nico Hoffmann -
Optimal Design of Experiments for Simulation-Based Inference of Mechanistic Acyclic Biological Networks [arXiv]
Vincent Zaballa, Elliot Hui -
Simulation-based Bayesian inference for multi-fingered robotic grasping [arXiv]
Norman Marlier, Olivier Brüls, Gilles Louppe -
Simulation-based inference of evolutionary parameters from adaptation dynamics using neural networks [bioRxiv]
Grace Avecilla, Julie N. Chuong, Fangfei Li, Gavin Sherlock, David Gresham, Yoav Ram
Applications of neural simulation-based inference beyond synthetic data.
-
SimBIG : A Forward Modeling Approach To Analyzing Galaxy Clustering [arXiv]
ChangHoon Hahn et al -
Mental speed is high until age 60 as revealed by analysis of over a million participants [Paper] Mischa von Krause, Stefan T. Radev, Andreas Voss
-
A neural simulation-based inference approach for characterizing the Galactic Center γ-ray excess [arXiv]
Siddharth Mishra-Sharma, Kyle Cranmer -
Towards constraining warm dark matter with stellar streams through neural simulation-based inference (Preliminary) [arXiv]
Joeri Hermans, Nilanjan Banik, Christoph Weniger, Gianfranco Bertone, Gilles Louppe -
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany [arXiv]
Stefan T. Radev, Frederik Graw, Simiao Chen, Nico T. Mutters, Vanessa M. Eichel, Till Bärnighausen, Ullrich Köthe -
Likelihood-free inference with neural compression of DES SV weak lensing map statistics [arXiv]
Niall Jeffrey, Justin Alsing, François Lanusse