-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
253 additions
and
23 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
require(rstan) | ||
|
||
# Stan generative model | ||
sim_stan <- " | ||
functions { | ||
int zibb_rng(int y, int n, real mu, real phi, real kappa) { | ||
if (bernoulli_rng(kappa) == 1) { | ||
return (0); | ||
} else { | ||
return (beta_binomial_rng(n, mu * phi, (1 - mu) * phi)); | ||
} | ||
} | ||
} | ||
data { | ||
int<lower=0> N_sample; // number of repertoires | ||
int<lower=0> N_gene; // gene | ||
int<lower=0> N_individual; // number of individuals | ||
int<lower=0> N_condition; // number of conditions | ||
array [N_sample] int N; // repertoire size | ||
array [N_sample] int condition_id; // id of conditions | ||
array [N_sample] int individual_id; // id of replicate | ||
real <lower=0> phi; | ||
real <lower=0, upper=1> kappa; | ||
array [N_condition] vector [N_gene] beta_condition; | ||
vector <lower=0> [N_condition] sigma_condition; | ||
real <lower=0> sigma_alpha; | ||
} | ||
generated quantities { | ||
vector [N_gene] alpha; | ||
array [N_individual] vector [N_gene] alpha_individual; | ||
array [N_sample] vector [N_gene] beta_individual; | ||
// generate usage | ||
array [N_sample] vector <lower=0, upper=1> [N_gene] theta; | ||
array [N_gene, N_sample] int Y; | ||
for(i in 1:N_gene) { | ||
alpha[i] = normal_rng(-3, 0.5); | ||
} | ||
for(i in 1:N_sample) { | ||
for(j in 1:N_gene) { | ||
alpha_individual[individual_id[i]][j] = normal_rng(alpha[j], sigma_alpha); | ||
beta_individual[i][j] = normal_rng(beta_condition[condition_id[i]][j], sigma_condition[condition_id[i]]); | ||
theta[i][j] = inv_logit(alpha_individual[individual_id[i]][j] + beta_individual[i][j]); | ||
Y[j, i] = zibb_rng(Y[j, i], N[i], theta[i][j], phi, kappa); | ||
} | ||
} | ||
} | ||
" | ||
|
||
# compile model | ||
model <- rstan::stan_model(model_code = sim_stan) | ||
|
||
|
||
|
||
# generate data based on the following parameters parameters | ||
set.seed(11132) | ||
N_gene <- 8 | ||
N_individual <- 10 | ||
N_condition <- 2 | ||
N_sample <- N_individual*N_condition | ||
|
||
condition_id <- rep(x = 1:N_condition, each = N_individual) | ||
|
||
N <- rep(x = 1000, times = N_sample) | ||
|
||
individual_id <- rep(x = 1:N_individual, times = N_condition) | ||
|
||
phi <- 200 | ||
kappa <- 0.02 | ||
|
||
beta_condition <- array(data = 0, dim = c(N_condition, N_gene)) | ||
for(c in 1:N_condition) { | ||
for(g in 1:N_gene) { | ||
u <- runif(n = 1, min = 0, max = 1) | ||
if(u <= 0.8) { | ||
beta_condition[c,g] <- rnorm(n = 1, mean = 0, sd = 0.1) | ||
} else { | ||
beta_condition[c,g] <- rnorm(n = 1, mean = 0, sd = 2) | ||
} | ||
} | ||
} | ||
|
||
sigma_condition <- rep(x = 0.5, times = N_condition) | ||
sigma_alpha <- 0.25 | ||
|
||
|
||
l <- list(N_sample = N_sample, | ||
N_gene = N_gene, | ||
N_individual = N_individual, | ||
N_condition = N_condition, | ||
N = N, | ||
condition_id = condition_id, | ||
individual_id = individual_id, | ||
phi = phi, | ||
kappa = kappa, | ||
beta_condition = beta_condition, | ||
sigma_condition = sigma_condition, | ||
sigma_alpha = sigma_alpha) | ||
|
||
# simulate | ||
sim <- rstan::sampling(object = model, | ||
data = l, | ||
iter = 1, | ||
chains = 1, | ||
algorithm="Fixed_param") | ||
|
||
# extract simulation and convert into data frame which can | ||
# be used as input of IgGeneUsage | ||
ysim <- rstan::extract(object = sim, par = "Y")$Y | ||
ysim <- ysim[1,,] | ||
|
||
ysim_df <- reshape2::melt(ysim) | ||
colnames(ysim_df) <- c("gene_name", "sample_id", "gene_usage_count") | ||
|
||
m <- data.frame(sample_id = 1:l$N_sample, | ||
individual_id = l$individual_id, | ||
condition_id = l$condition_id) | ||
|
||
ysim_df <- merge(x = ysim_df, y = m, by = "sample_id", all.x = T) | ||
|
||
ysim_df$condition <- paste0("C_", ysim_df$condition_id) | ||
ysim_df$gene_name <- paste0("G_", ysim_df$gene_name) | ||
ysim_df$individual_id <- paste0("I_", ysim_df$individual_id) | ||
|
||
ysim_df$condition_id <- NULL | ||
ysim_df$sample_id <- NULL | ||
ysim_df <- ysim_df[, c("individual_id", "condition", "gene_name", | ||
"gene_usage_count")] | ||
|
||
d_zibb_5 <- ysim_df | ||
|
||
# save | ||
save(d_zibb_5, file = "data/d_zibb_5.RData", compress = T) | ||
|
||
|
||
# save(sim, file = "mytests/sim_d_zibb_4.RData", compress = T) | ||
ggplot(data = d_zibb_5)+ | ||
facet_wrap(facets = ~gene_name, scales = "free_y")+ | ||
geom_point(aes(x = condition, y = gene_usage_count, group = individual_id))+ | ||
geom_line(aes(x = condition, y = gene_usage_count, group = individual_id))+ | ||
theme_bw(base_size = 10)+ | ||
theme(legend.position = "none") | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
\name{d_zibb_5} | ||
\alias{d_zibb_5} | ||
\docType{data} | ||
\title{Simulated Ig gene usage data} | ||
|
||
\description{ | ||
A small example of paired-sample IRRs with these features: | ||
|
||
\itemize{ | ||
\item 2 conditions | ||
\item 10 individuals with one IRRs per condition | ||
\item 8 Ig genes | ||
} | ||
This dataset was simulated from zero-inflated beta-binomial (ZIBB) | ||
distribution. Simulation code is available in inst/scripts/d_zibb_5.R | ||
} | ||
|
||
\usage{ | ||
data("d_zibb_5", package = "IgGeneUsage") | ||
} | ||
|
||
\format{ | ||
A data frame with 4 columns: | ||
\itemize{ | ||
\item "individual_id" | ||
\item "condition" | ||
\item "gene_name" | ||
\item "gene_name_count" | ||
} | ||
This format is accepted by IgGeneUsage. | ||
} | ||
\source{ | ||
Simulation code is provided in inst/scripts/d_zibb_5.R | ||
} | ||
\examples{ | ||
data("d_zibb_5", package = "IgGeneUsage") | ||
head(d_zibb_5) | ||
} | ||
\keyword{d_zibb_5} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters