-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
161 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import torch | ||
import torchvision | ||
import os | ||
import shutil | ||
import gc | ||
import tqdm | ||
import matplotlib.pyplot as plt | ||
import torchvision.transforms as transforms | ||
from transformers import CLIPTextModel | ||
from lora_w2w import LoRAw2w | ||
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler | ||
from safetensors.torch import save_file | ||
from transformers import AutoTokenizer, PretrainedConfig | ||
from PIL import Image | ||
import warnings | ||
warnings.filterwarnings("ignore") | ||
from diffusers import ( | ||
AutoencoderKL, | ||
DDPMScheduler, | ||
DiffusionPipeline, | ||
DPMSolverMultistepScheduler, | ||
UNet2DConditionModel, | ||
PNDMScheduler, | ||
StableDiffusionPipeline | ||
) | ||
|
||
|
||
|
||
######## Basic utilities | ||
|
||
### load base models | ||
def load_models(device): | ||
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51" | ||
|
||
revision = None | ||
rank = 1 | ||
weight_dtype = torch.bfloat16 | ||
|
||
# Load scheduler, tokenizer and models. | ||
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51", | ||
torch_dtype=torch.float16,safety_checker = None, | ||
requires_safety_checker = False).to(device) | ||
noise_scheduler = pipe.scheduler | ||
del pipe | ||
tokenizer = AutoTokenizer.from_pretrained( | ||
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision | ||
) | ||
text_encoder = CLIPTextModel.from_pretrained( | ||
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision | ||
) | ||
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision) | ||
unet = UNet2DConditionModel.from_pretrained( | ||
pretrained_model_name_or_path, subfolder="unet", revision=revision | ||
) | ||
|
||
unet.requires_grad_(False) | ||
unet.to(device, dtype=weight_dtype) | ||
vae.requires_grad_(False) | ||
|
||
text_encoder.requires_grad_(False) | ||
vae.requires_grad_(False) | ||
vae.to(device, dtype=weight_dtype) | ||
text_encoder.to(device, dtype=weight_dtype) | ||
print("") | ||
|
||
return unet, vae, text_encoder, tokenizer, noise_scheduler | ||
|
||
|
||
|
||
### basic inference to generate images conditioned on text prompts | ||
@torch.no_grad | ||
def inference(network, unet, vae, text_encoder, tokenizer, prompt, negative_prompt, guidance_scale, noise_scheduler, ddim_steps, seed, generator, device): | ||
generator = generator.manual_seed(seed) | ||
latents = torch.randn( | ||
(1, unet.in_channels, 512 // 8, 512 // 8), | ||
generator = generator, | ||
device = device | ||
).bfloat16() | ||
|
||
|
||
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | ||
|
||
text_embeddings = text_encoder(text_input.input_ids.to(device))[0] | ||
|
||
max_length = text_input.input_ids.shape[-1] | ||
uncond_input = tokenizer( | ||
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt" | ||
) | ||
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0] | ||
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | ||
noise_scheduler.set_timesteps(ddim_steps) | ||
latents = latents * noise_scheduler.init_noise_sigma | ||
|
||
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)): | ||
latent_model_input = torch.cat([latents] * 2) | ||
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t) | ||
with network: | ||
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample | ||
#guidance | ||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | ||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | ||
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample | ||
|
||
latents = 1 / 0.18215 * latents | ||
image = vae.decode(latents).sample | ||
image = (image / 2 + 0.5).clamp(0, 1) | ||
|
||
return image | ||
|
||
|
||
|
||
### save model in w2w space (principal component representation) | ||
def save_model_w2w(network, path): | ||
proj = network.proj.clone().detach().float() | ||
|
||
if not os.path.exists(path): | ||
os.makedirs(path) | ||
|
||
torch.save(proj, path+"/"+"w2wmodel.pt") | ||
|
||
|
||
### save model in format compatible with Diffusers | ||
def save_model_for_diffusers(network,std, mean, v, weight_dimensions, path): | ||
proj = network.proj.clone().detach() | ||
unproj = torch.matmul(proj,v[:, :].T)*std+mean | ||
|
||
final_weights0 = {} | ||
counter = 0 | ||
for key in weight_dimensions.keys(): | ||
final_weights0[key] = unproj[0, counter:counter+weight_dimensions[key][0][0]].unflatten(0, weight_dimensions[key][1]) | ||
counter += weight_dimensions[key][0][0] | ||
|
||
#renaming keys to be compatible with Diffusers | ||
for key in list(final_weights0.keys()): | ||
final_weights0[key.replace( "lora_unet_", "base_model.model.").replace("A", "down").replace("B", "up").replace( "weight", "identity1.weight").replace("_lora", ".lora").replace("lora_down", "lora_A").replace("lora_up", "lora_B")] = final_weights0.pop(key) | ||
|
||
|
||
|
||
final_weights0_keys = sorted(final_weights0.keys()) | ||
|
||
final_weights = {} | ||
for i,key in enumerate(final_weights0_keys): | ||
final_weights[key] = final_weights0[key] | ||
|
||
if not os.path.exists(path): | ||
os.makedirs(path+"/unet") | ||
else: | ||
os.mkdir(path+"/unet") | ||
|
||
|
||
|
||
#add config for PeftConfig | ||
shutil.copyfile("../files/adapter_config.json", path+"/unet/adapter_config.json") | ||
|
||
save_file(final_weights, path+"/unet/adapter_model.safetensors") | ||
|
||
|
||
|
||
|
||
|
||
|