Skip to content

A helper package to dig through lavaan objects.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

sociometricresearch/digavaan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

digavaan

The goal of digavaan is to extract information as R data structures from a lavaan object.

Installation

Install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("asqm/digavaan")

Warning: digavaan will most likely never go to CRAN because it uses internal functions from lavaan. This hinders the package as unstable. However, because most of the inner functions that are used in this package are the same used by lavaan::summary, unless there’s a breaking change (very unlikely with such a mature package) the same information should be stable.

Example

Using the same example from lavaan:

library(lavaan)
#> This is lavaan 0.6-2
#> lavaan is BETA software! Please report any bugs.
library(digavaan)

model <- "
    # latent variables
     ind60 =~ x1 + x2 + x3
      dem60 =~ y1 + y2 + y3 + y4
      dem65 =~ y5 + y6 + y7 + y8
    # regressions
      dem60 ~ ind60
      dem65 ~ ind60 + dem60
    # residual covariances
      y1 ~~ y5
      y2 ~~ y4 + y6
      y3 ~~ y7
      y4 ~~ y8
      y6 ~~ y8"

fit <- sem(model, data=PoliticalDemocracy)

# Traditional print
summary(fit)
#> lavaan 0.6-2 ended normally after 68 iterations
#> 
#>   Optimization method                           NLMINB
#>   Number of free parameters                         31
#> 
#>   Number of observations                            75
#> 
#>   Estimator                                         ML
#>   Model Fit Test Statistic                      38.125
#>   Degrees of freedom                                35
#>   P-value (Chi-square)                           0.329
#> 
#> Parameter Estimates:
#> 
#>   Information                                 Expected
#>   Information saturated (h1) model          Structured
#>   Standard Errors                             Standard
#> 
#> Latent Variables:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   ind60 =~                                            
#>     x1                1.000                           
#>     x2                2.180    0.139   15.742    0.000
#>     x3                1.819    0.152   11.967    0.000
#>   dem60 =~                                            
#>     y1                1.000                           
#>     y2                1.257    0.182    6.889    0.000
#>     y3                1.058    0.151    6.987    0.000
#>     y4                1.265    0.145    8.722    0.000
#>   dem65 =~                                            
#>     y5                1.000                           
#>     y6                1.186    0.169    7.024    0.000
#>     y7                1.280    0.160    8.002    0.000
#>     y8                1.266    0.158    8.007    0.000
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   dem60 ~                                             
#>     ind60             1.483    0.399    3.715    0.000
#>   dem65 ~                                             
#>     ind60             0.572    0.221    2.586    0.010
#>     dem60             0.837    0.098    8.514    0.000
#> 
#> Covariances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>  .y1 ~~                                               
#>    .y5                0.624    0.358    1.741    0.082
#>  .y2 ~~                                               
#>    .y4                1.313    0.702    1.871    0.061
#>    .y6                2.153    0.734    2.934    0.003
#>  .y3 ~~                                               
#>    .y7                0.795    0.608    1.308    0.191
#>  .y4 ~~                                               
#>    .y8                0.348    0.442    0.787    0.431
#>  .y6 ~~                                               
#>    .y8                1.356    0.568    2.386    0.017
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>    .x1                0.082    0.019    4.184    0.000
#>    .x2                0.120    0.070    1.718    0.086
#>    .x3                0.467    0.090    5.177    0.000
#>    .y1                1.891    0.444    4.256    0.000
#>    .y2                7.373    1.374    5.366    0.000
#>    .y3                5.067    0.952    5.324    0.000
#>    .y4                3.148    0.739    4.261    0.000
#>    .y5                2.351    0.480    4.895    0.000
#>    .y6                4.954    0.914    5.419    0.000
#>    .y7                3.431    0.713    4.814    0.000
#>    .y8                3.254    0.695    4.685    0.000
#>     ind60             0.448    0.087    5.173    0.000
#>    .dem60             3.956    0.921    4.295    0.000
#>    .dem65             0.172    0.215    0.803    0.422

# Same information but as a data frames
summary_lavaan(fit)
#> $header
#> $header$iter
#> [1] "lavaan (0.6-2) converged normally after  68 iterations\n"
#> 
#> $header$n_groups
#>   name_group used total
#> 1    Group 1   75    NA
#> 
#> $header$estimator_details
#>                         estimator       ml ml_scaled
#> 1 Minimum Function Test Statistic 38.12522        NA
#> 2              Degrees of freedom 35.00000        NA
#> 3            P-value (Chi-square)  0.32900        NA
#> 
#> 
#> $estimates
#>      lhs op   rhs exo   est    se      z pvalue
#> 1  ind60 =~    x1   0 1.000 0.000     NA     NA
#> 2  ind60 =~    x2   0 2.180 0.139 15.742  0.000
#> 3  ind60 =~    x3   0 1.819 0.152 11.967  0.000
#> 4  dem60 =~    y1   0 1.000 0.000     NA     NA
#> 5  dem60 =~    y2   0 1.257 0.182  6.889  0.000
#> 6  dem60 =~    y3   0 1.058 0.151  6.987  0.000
#> 7  dem60 =~    y4   0 1.265 0.145  8.722  0.000
#> 8  dem65 =~    y5   0 1.000 0.000     NA     NA
#> 9  dem65 =~    y6   0 1.186 0.169  7.024  0.000
#> 10 dem65 =~    y7   0 1.280 0.160  8.002  0.000
#> 11 dem65 =~    y8   0 1.266 0.158  8.007  0.000
#> 12 dem60  ~ ind60   0 1.483 0.399  3.715  0.000
#> 13 dem65  ~ ind60   0 0.572 0.221  2.586  0.010
#> 14 dem65  ~ dem60   0 0.837 0.098  8.514  0.000
#> 15    y1 ~~    y5   0 0.624 0.358  1.741  0.082
#> 16    y2 ~~    y4   0 1.313 0.702  1.871  0.061
#> 17    y2 ~~    y6   0 2.153 0.734  2.934  0.003
#> 18    y3 ~~    y7   0 0.795 0.608  1.308  0.191
#> 19    y4 ~~    y8   0 0.348 0.442  0.787  0.431
#> 20    y6 ~~    y8   0 1.356 0.568  2.386  0.017
#> 21    x1 ~~    x1   0 0.082 0.019  4.184  0.000
#> 22    x2 ~~    x2   0 0.120 0.070  1.718  0.086
#> 23    x3 ~~    x3   0 0.467 0.090  5.177  0.000
#> 24    y1 ~~    y1   0 1.891 0.444  4.256  0.000
#> 25    y2 ~~    y2   0 7.373 1.374  5.366  0.000
#> 26    y3 ~~    y3   0 5.067 0.952  5.324  0.000
#> 27    y4 ~~    y4   0 3.148 0.739  4.261  0.000
#> 28    y5 ~~    y5   0 2.351 0.480  4.895  0.000
#> 29    y6 ~~    y6   0 4.954 0.914  5.419  0.000
#> 30    y7 ~~    y7   0 3.431 0.713  4.814  0.000
#> 31    y8 ~~    y8   0 3.254 0.695  4.685  0.000
#> 32 ind60 ~~ ind60   0 0.448 0.087  5.173  0.000
#> 33 dem60 ~~ dem60   0 3.956 0.921  4.295  0.000
#> 34 dem65 ~~ dem65   0 0.172 0.215  0.803  0.422

About

A helper package to dig through lavaan objects.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages