-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0ab4b00
commit 43f8216
Showing
2 changed files
with
264 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
"""Utility functions for Solr users of searcharray.""" | ||
import re | ||
import pandas as pd | ||
import numpy as np | ||
from typing import List, Optional | ||
from searcharray.postings import PostingsArray | ||
|
||
|
||
def parse_min_should_match(num_clauses: int, spec: str) -> int: | ||
"""Parse Solr's min should match (ie mm) spec. | ||
See this ChatGPT translation of mm code from Solr's Java code for parsing this | ||
https://chat.openai.com/share/76642aec-7e05-420f-a53a-83b8e2eea8fb | ||
Parameters | ||
---------- | ||
num_clauses : int | ||
spec : str | ||
Returns | ||
------- | ||
int : the number of clauses that must match | ||
""" | ||
def checked_parse_int(value, error_message): | ||
try: | ||
return int(value) | ||
except ValueError: | ||
raise ValueError(error_message) | ||
|
||
result = num_clauses | ||
spec = spec.strip() | ||
|
||
if '<' in spec: | ||
# we have conditional spec(s) | ||
space_around_less_than_pattern = re.compile(r'\s*<\s*') | ||
spec = space_around_less_than_pattern.sub('<', spec) | ||
for s in spec.split(): | ||
parts = s.split('<', 1) | ||
if len(parts) < 2: | ||
raise ValueError("Invalid 'mm' spec: '" + s + "'. Expecting values before and after '<'") | ||
upper_bound = checked_parse_int(parts[0], "Invalid 'mm' spec. Expecting an integer.") | ||
if num_clauses <= upper_bound: | ||
return result | ||
else: | ||
result = parse_min_should_match(num_clauses, parts[1]) | ||
return result | ||
|
||
# otherwise, simple expression | ||
if '%' in spec: | ||
# percentage - assume the % was the last char. If not, let int() fail. | ||
spec = spec[:-1] | ||
percent = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") | ||
calc = (result * percent) * (1 / 100) | ||
result = result + int(calc) if calc < 0 else int(calc) | ||
else: | ||
calc = checked_parse_int(spec, "Invalid 'mm' spec. Expecting an integer.") | ||
result = result + calc if calc < 0 else calc | ||
|
||
return min(num_clauses, max(result, 0)) | ||
|
||
|
||
def parse_field_boosts(field_lists: List[str]) -> dict: | ||
"""Parse Solr's qf, pf, pf2, pf3 field boosts.""" | ||
if not field_lists: | ||
return {} | ||
|
||
out = {} | ||
carat_pattern = re.compile(r'\^') | ||
|
||
for field in field_lists: | ||
parts = carat_pattern.split(field) | ||
out[parts[0]] = None if len(parts) == 1 else float(parts[1]) | ||
|
||
return out | ||
|
||
|
||
def edismax(frame: pd.DataFrame, | ||
q: str, | ||
qf: List[str], | ||
mm: Optional[str] = None, | ||
pf: Optional[List[str]] = None, | ||
pf2: Optional[List[str]] = None, | ||
pf3: Optional[List[str]] = None, | ||
q_op: str = "OR") -> np.ndarray: | ||
"""Run edismax search over dataframe with searcharray fields. | ||
Parameters | ||
---------- | ||
q : str | ||
The query string | ||
mm : str | ||
The minimum should match spec | ||
qf : list | ||
The fields to search | ||
pf : list | ||
The fields to search for phrase matches | ||
pf2 : list | ||
The fields to search for bigram matches | ||
pf3 : list | ||
The fields to search for trigram matches | ||
q_op : str, optional | ||
The default operator, by default "OR" | ||
Returns | ||
------- | ||
np.ndarray | ||
The search results | ||
""" | ||
terms = q.split() | ||
query_fields = parse_field_boosts(qf) | ||
phrase_fields = parse_field_boosts(pf) if pf else {} | ||
# bigram_fields = parse_field_boosts(pf2) if pf2 else {} | ||
# trigram_fields = parse_field_boosts(pf3) if pf3 else {} | ||
|
||
def check_field(frame, field): | ||
if field not in frame.columns: | ||
raise ValueError(f"Field {field} not in dataframe") | ||
if not isinstance(frame[field].array, PostingsArray): | ||
raise ValueError(f"Field {field} is not a searcharray field") | ||
|
||
term_scores = [] | ||
for term in terms: | ||
max_scores = np.zeros(len(frame)) | ||
for field, boost in query_fields.items(): | ||
check_field(frame, field) | ||
field_term_score = frame[field].array.bm25(term) * (1 if boost is None else boost) | ||
max_scores = np.maximum(max_scores, field_term_score) | ||
term_scores.append(max_scores) | ||
|
||
if mm is None: | ||
mm = "1" | ||
if q_op == "AND": | ||
mm = "100%" | ||
|
||
min_should_match = parse_min_should_match(len(terms), spec=mm) | ||
qf_scores = np.asarray(term_scores) | ||
matches_gt_mm = np.sum(qf_scores > 0, axis=0) >= min_should_match | ||
qf_scores = np.sum(term_scores, axis=0) | ||
qf_scores[~matches_gt_mm] = 0 | ||
|
||
phrase_scores = [] | ||
for field, boost in phrase_fields.items(): | ||
check_field(frame, field) | ||
field_phrase_score = frame[field].array.bm25(terms) * (1 if boost is None else boost) | ||
phrase_scores.append(field_phrase_score) | ||
|
||
if len(phrase_scores) > 0: | ||
phrase_scores = np.sum(phrase_scores, axis=0) | ||
# Add where term_scores > 0 | ||
term_match_idx = np.where(qf_scores)[0] | ||
|
||
qf_scores[term_match_idx] += phrase_scores[term_match_idx] | ||
return qf_scores |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
"""Tests for solr dsl helpers.""" | ||
import pytest | ||
from test_utils import w_scenarios | ||
import pandas as pd | ||
import numpy as np | ||
import numbers | ||
|
||
from searcharray.solr import parse_min_should_match, edismax | ||
from searcharray.postings import PostingsArray | ||
|
||
|
||
def test_standard_percentage(): | ||
assert parse_min_should_match(10, "50%") == 5 | ||
|
||
|
||
def test_over_100_percentage(): | ||
assert parse_min_should_match(10, "150%") == 10 | ||
|
||
|
||
def test_negative_percentage(): | ||
assert parse_min_should_match(10, "-50%") == 5 | ||
|
||
|
||
def test_standard_integer(): | ||
assert parse_min_should_match(10, "3") == 3 | ||
|
||
|
||
def test_negative_integer(): | ||
assert parse_min_should_match(10, "-3") == 7 | ||
|
||
|
||
def test_integer_exceeding_clause_count(): | ||
assert parse_min_should_match(10, "15") == 10 | ||
|
||
|
||
def test_conditional_spec_less_than_clause_count(): | ||
assert parse_min_should_match(10, "5<70%") == 7 | ||
|
||
|
||
def test_conditional_spec_greater_than_clause_count(): | ||
assert parse_min_should_match(10, "15<70%") == 10 | ||
|
||
|
||
def test_complex_conditional_spec(): | ||
assert parse_min_should_match(10, "3<50% 5<30%") == 3 | ||
|
||
|
||
def test_invalid_spec_percentage(): | ||
with pytest.raises(ValueError): | ||
parse_min_should_match(10, "five%") | ||
|
||
|
||
def test_invalid_spec_integer(): | ||
with pytest.raises(ValueError): | ||
parse_min_should_match(10, "five") | ||
|
||
|
||
def test_invalid_spec_conditional(): | ||
with pytest.raises(ValueError): | ||
parse_min_should_match(10, "5<") | ||
|
||
|
||
def test_empty_spec(): | ||
with pytest.raises(ValueError): | ||
parse_min_should_match(10, "") | ||
|
||
|
||
def test_complex_conditional_spec_with_percentage(): | ||
assert parse_min_should_match(10, "2<2 5<3 7<40%") == 4 | ||
|
||
|
||
edismax_scenarios = { | ||
"base": { | ||
"frame": { | ||
'title': lambda: PostingsArray.index(["foo bar bar baz", "data2", "data3 bar", "bunny funny wunny"]), | ||
'body': lambda: PostingsArray.index(["buzz", "data2", "data3 bar", "bunny funny wunny"]) | ||
}, | ||
"expected": [lambda frame: sum([frame['title'].array.bm25("foo")[0], | ||
frame['title'].array.bm25("bar")[0]]), | ||
0, | ||
lambda frame: max(frame['title'].array.bm25("bar")[2], | ||
frame['body'].array.bm25("bar")[2]), | ||
0], | ||
"params": {'q': "foo bar", 'qf': ["title", "body"]}, | ||
}, | ||
} | ||
|
||
|
||
def build_df(frame): | ||
for k, v in frame.items(): | ||
if hasattr(v, '__call__'): | ||
frame[k] = v() | ||
frame = pd.DataFrame(frame) | ||
return frame | ||
|
||
|
||
def compute_expected(expected, frame): | ||
for idx, exp in enumerate(expected): | ||
if hasattr(exp, '__call__'): | ||
comp_expected = exp(frame) | ||
yield comp_expected | ||
else: | ||
yield exp | ||
|
||
|
||
@w_scenarios(edismax_scenarios) | ||
def test_edismax(frame, expected, params): | ||
frame = build_df(frame) | ||
expected = list(compute_expected(expected, frame)) | ||
scores = edismax(frame, **params) | ||
assert np.allclose(scores, expected) |