-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRAGE_center.py
174 lines (141 loc) · 6.57 KB
/
RAGE_center.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
## Modified from: https://github.com/fiezt/Transductive-Linear-Bandit-Code/blob/master/RAGE.py
import numpy as np
import itertools
import logging
import time
from tqdm import tqdm
import gc
class RAGE_center(object):
def __init__(self, X, theta_star, factor, delta, Z=None):
self.X = X
self.Z = X if Z is None else Z
self.K = len(X)
self.K_Z = len(self.Z)
self.d = X.shape[1]
self.theta_star = theta_star
self.opt_arm = np.argmax(self.Z @ theta_star)
self.delta = delta
self.factor = factor
self.theta_hat_list = []
def algorithm(self, seed, var=True, binary=False, sigma=1, stop_arm_count=1, rel_thresh=0.01):
self.var = var
self.seed = seed
self.sigma = sigma
self.stop_arm_count = stop_arm_count
self.rel_thresh=rel_thresh
np.random.seed(self.seed)
self.active_arms = list(range(len(self.Z)))
self.arm_counts = np.zeros(self.K)
self.N = 0
self.phase_index = 1
self.theta_hat = None
while len(self.active_arms) > self.stop_arm_count:
self.delta_t = self.delta / (self.phase_index ** 2)
self.build_Y()
design, rho = self.optimal_allocation()
support = np.sum((design > 0).astype(int))
n_min = 2 * self.factor * support
eps = 1 / self.factor
# print(f"n_min: {n_min}\n")
num_samples = max(np.ceil(8*(2**(self.phase_index+1))**2*rho*(1+eps)*np.log(2*self.K_Z**2/self.delta_t) * (self.sigma ** 2)), n_min).astype(int)
allocation = self.rounding(design, num_samples)
pulls = np.vstack([np.tile(self.X[i], (num, 1)) for i, num in enumerate(allocation) if num > 0])
if not binary:
rewards = [email protected]_star + np.random.randn(allocation.sum(), 1) * self.sigma
else:
rewards = np.random.binomial(1, pulls @ self.theta_star, (allocation.sum(), 1))
self.A_inv = np.linalg.pinv(pulls.T @ pulls)
self.theta_hat = self.A_inv @ pulls.T @ rewards
self.reference_update()
self.drop_arms()
self.phase_index += 1
self.arm_counts += allocation
self.N += num_samples
self.theta_hat_list.append((self.N, self.theta_hat, len(self.active_arms)))
logging.info('\n\n')
logging.info('finished phase %s' % str(self.phase_index-1))
logging.info('design %s' % str(design))
logging.debug('allocation %s' % str(allocation))
logging.debug('arm counts %s' % str(self.arm_counts))
logging.info('round sample count %s' % str(num_samples))
logging.info('total sample count %s' % str(self.N))
logging.info('Size of active arms %s' % str(len(self.active_arms)))
logging.info('active arms %s' % str(self.active_arms))
logging.info('rho %s' % str(rho))
logging.info('\n\n')
del self.Yhat
del self.X
del self.Z
self.success = (self.opt_arm in self.active_arms)
logging.critical('Succeeded? %s' % str(self.success))
logging.critical('Sample complexity %s' % str(self.N))
def build_Y(self):
active_Z = self.Z[self.active_arms]
reference = np.mean(active_Z, axis=0)
Y = active_Z - reference
self.Yhat = Y
def reference_update(self):
if self.theta_hat is not None:
active_Z = self.Z[self.active_arms]
self.opt_arm = self.active_arms[np.argmax(active_Z @ self.theta_hat)]
def optimal_allocation(self):
design = np.ones(self.K)
design /= design.sum()
max_iter = 5000
for count in range(1, max_iter):
A_inv = np.linalg.pinv([email protected](design)@self.X)
U,D,V = np.linalg.svd(A_inv)
Ainvhalf = [email protected](np.sqrt(D))@V.T
newY = (self.Yhat@Ainvhalf)**2
rho = [email protected]((newY.shape[1], 1))
idx = np.argmax(rho)
y = self.Yhat[idx, :, None]
g = ((self.X@A_inv@y)*(self.X@A_inv@y)).flatten()
g_idx = np.argmax(g)
# print(g)
# g_idx = np.argmin(g)
gamma = 2/(count+2)
design_update = -gamma*design
design_update[g_idx] += gamma
relative = np.linalg.norm(design_update)/(np.linalg.norm(design))
design += design_update
if count % 100 == 0:
logging.debug('design status %s, %s, %s, %s' % (self.seed, count, relative, np.max(rho)))
# print(f"count: {count}, np.max(rho): {np.max(rho)}\n")
if relative < self.rel_thresh:
# print(f"Early break at count {count}, rho max {np.max(rho)}")
break
del A_inv, U, D, V, Ainvhalf, newY, rho, y, g
gc.collect()
idx_fix = np.where(design < 1e-5)[0]
design[idx_fix] = 0
return design, np.max(rho)
def rounding(self, design, num_samples):
num_support = (design > 0).sum()
support_idx = np.where(design>0)[0]
support = design[support_idx]
n_round = np.ceil((num_samples - .5*num_support)*support)
while n_round.sum()-num_samples != 0:
if n_round.sum() < num_samples:
idx = np.argmin(n_round/support)
n_round[idx] += 1
else:
idx = np.argmax((n_round-1)/support)
n_round[idx] -= 1
allocation = np.zeros(len(design))
allocation[support_idx] = n_round
return allocation.astype(int)
def drop_arms(self):
if self.theta_hat is None:
return
presumed_best_arm = self.Z[self.opt_arm, :, None]
active_arms_matrix = self.Z[self.active_arms, :]
y = presumed_best_arm.T - active_arms_matrix
projections = y @ self.theta_hat.flatten()
if not self.var:
thresholds = 2 ** (-self.phase_index - 2)
else:
quadratic_forms = np.einsum('ij,jk,ik->i', y, self.A_inv, y)
thresholds = np.sqrt(2 * (self.sigma**2) * np.log(2 * self.K**2 / self.delta_t) * quadratic_forms)
removes = np.array(self.active_arms)[projections >= thresholds]
self.active_arms = [arm for arm in self.active_arms if arm not in removes]