Skip to content

srimugunthan/WeightLiftPredict

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project for Practical Machine learning course


The solution follows the below steps

  1. Read in the input train and test data and understand it

  2. Clean up the data

  3. Do Principal component analysis and find the most important variables.

  4. Create cross validation datasets

  5. Fit two models, LDA and random forests

We select the model with the greater accuracy


library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## 
## The following object is masked from 'package:ggplot2':
## 
##     margin
mainDir="/home/sdhandap/WeightLiftPredict"
setwd(mainDir)
source("helperfuncs.R")

##STEP1: Read in the input train and test data and understand it

Read in the training and test data

pmltraindata <- read.table("pml-training.csv",sep=",",header=TRUE)
pmltestdata <- read.table("pml-testing.csv",sep=",",header=TRUE)

Explore the structure of the data

preclean_explore(pmltraindata, pmltestdata)
## =============================
## 'data.frame':	19622 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ raw_timestamp_part_1    : int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2    : int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp          : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 9 ...
##  $ new_window              : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
##  $ num_window              : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt               : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt              : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt                : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt        : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ kurtosis_roll_belt      : Factor w/ 397 levels "","0.000673",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_belt     : Factor w/ 317 levels "","0.006078",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_belt       : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_belt      : Factor w/ 395 levels "","0.000000",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_belt.1    : Factor w/ 338 levels "","0.000000",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_belt       : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_belt            : Factor w/ 68 levels "","0.0","-0.1",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ min_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_belt            : Factor w/ 68 levels "","0.0","-0.1",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ amplitude_roll_belt     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : Factor w/ 4 levels "","0.00","0.0000",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ var_total_accel_belt    : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y            : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z            : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x            : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y            : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z            : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x           : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y           : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z           : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm                : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm               : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm                 : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm         : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ var_accel_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y             : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z             : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x             : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y             : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z             : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x            : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y            : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z            : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ kurtosis_roll_arm       : Factor w/ 330 levels "","0.01388","0.01574",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_arm      : Factor w/ 328 levels "","-0.00484",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_arm        : Factor w/ 395 levels "","-0.01548",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_arm       : Factor w/ 331 levels "","-0.00051",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_pitch_arm      : Factor w/ 328 levels "","0.00000","-0.00184",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_arm        : Factor w/ 395 levels "","0.00000","-0.00311",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell          : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell            : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ kurtosis_roll_dumbbell  : Factor w/ 398 levels "","0.0016","-0.0035",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_picth_dumbbell : Factor w/ 401 levels "","0.0045","0.0130",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ kurtosis_yaw_dumbbell   : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_roll_dumbbell  : Factor w/ 401 levels "","0.0011","0.0014",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_pitch_dumbbell : Factor w/ 402 levels "","-0.0053","0.0063",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ skewness_yaw_dumbbell   : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##  $ max_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : Factor w/ 73 levels "","0.0","-0.1",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ min_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : Factor w/ 73 levels "","0.0","-0.1",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ amplitude_roll_dumbbell : num  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]
## 
## 'data.frame':	20 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : Factor w/ 6 levels "adelmo","carlitos",..: 6 5 5 1 4 5 5 5 2 3 ...
##  $ raw_timestamp_part_1    : int  1323095002 1322673067 1322673075 1322832789 1322489635 1322673149 1322673128 1322673076 1323084240 1322837822 ...
##  $ raw_timestamp_part_2    : int  868349 778725 342967 560311 814776 510661 766645 54671 916313 384285 ...
##  $ cvtd_timestamp          : Factor w/ 11 levels "02/12/2011 13:33",..: 5 10 10 1 6 11 11 10 3 2 ...
##  $ new_window              : Factor w/ 1 level "no": 1 1 1 1 1 1 1 1 1 1 ...
##  $ num_window              : int  74 431 439 194 235 504 485 440 323 664 ...
##  $ roll_belt               : num  123 1.02 0.87 125 1.35 -5.92 1.2 0.43 0.93 114 ...
##  $ pitch_belt              : num  27 4.87 1.82 -41.6 3.33 1.59 4.44 4.15 6.72 22.4 ...
##  $ yaw_belt                : num  -4.75 -88.9 -88.5 162 -88.6 -87.7 -87.3 -88.5 -93.7 -13.1 ...
##  $ total_accel_belt        : int  20 4 5 17 3 4 4 4 4 18 ...
##  $ kurtosis_roll_belt      : logi  NA NA NA NA NA NA ...
##  $ kurtosis_picth_belt     : logi  NA NA NA NA NA NA ...
##  $ kurtosis_yaw_belt       : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_belt      : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_belt.1    : logi  NA NA NA NA NA NA ...
##  $ skewness_yaw_belt       : logi  NA NA NA NA NA NA ...
##  $ max_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ max_picth_belt          : logi  NA NA NA NA NA NA ...
##  $ max_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ min_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ min_pitch_belt          : logi  NA NA NA NA NA NA ...
##  $ min_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ amplitude_roll_belt     : logi  NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : logi  NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : logi  NA NA NA NA NA NA ...
##  $ var_total_accel_belt    : logi  NA NA NA NA NA NA ...
##  $ avg_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : logi  NA NA NA NA NA NA ...
##  $ var_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : logi  NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : logi  NA NA NA NA NA NA ...
##  $ var_pitch_belt          : logi  NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : logi  NA NA NA NA NA NA ...
##  $ var_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  -0.5 -0.06 0.05 0.11 0.03 0.1 -0.06 -0.18 0.1 0.14 ...
##  $ gyros_belt_y            : num  -0.02 -0.02 0.02 0.11 0.02 0.05 0 -0.02 0 0.11 ...
##  $ gyros_belt_z            : num  -0.46 -0.07 0.03 -0.16 0 -0.13 0 -0.03 -0.02 -0.16 ...
##  $ accel_belt_x            : int  -38 -13 1 46 -8 -11 -14 -10 -15 -25 ...
##  $ accel_belt_y            : int  69 11 -1 45 4 -16 2 -2 1 63 ...
##  $ accel_belt_z            : int  -179 39 49 -156 27 38 35 42 32 -158 ...
##  $ magnet_belt_x           : int  -13 43 29 169 33 31 50 39 -6 10 ...
##  $ magnet_belt_y           : int  581 636 631 608 566 638 622 635 600 601 ...
##  $ magnet_belt_z           : int  -382 -309 -312 -304 -418 -291 -315 -305 -302 -330 ...
##  $ roll_arm                : num  40.7 0 0 -109 76.1 0 0 0 -137 -82.4 ...
##  $ pitch_arm               : num  -27.8 0 0 55 2.76 0 0 0 11.2 -63.8 ...
##  $ yaw_arm                 : num  178 0 0 -142 102 0 0 0 -167 -75.3 ...
##  $ total_accel_arm         : int  10 38 44 25 29 14 15 22 34 32 ...
##  $ var_accel_arm           : logi  NA NA NA NA NA NA ...
##  $ avg_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : logi  NA NA NA NA NA NA ...
##  $ var_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : logi  NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : logi  NA NA NA NA NA NA ...
##  $ var_pitch_arm           : logi  NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : logi  NA NA NA NA NA NA ...
##  $ var_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  -1.65 -1.17 2.1 0.22 -1.96 0.02 2.36 -3.71 0.03 0.26 ...
##  $ gyros_arm_y             : num  0.48 0.85 -1.36 -0.51 0.79 0.05 -1.01 1.85 -0.02 -0.5 ...
##  $ gyros_arm_z             : num  -0.18 -0.43 1.13 0.92 -0.54 -0.07 0.89 -0.69 -0.02 0.79 ...
##  $ accel_arm_x             : int  16 -290 -341 -238 -197 -26 99 -98 -287 -301 ...
##  $ accel_arm_y             : int  38 215 245 -57 200 130 79 175 111 -42 ...
##  $ accel_arm_z             : int  93 -90 -87 6 -30 -19 -67 -78 -122 -80 ...
##  $ magnet_arm_x            : int  -326 -325 -264 -173 -170 396 702 535 -367 -420 ...
##  $ magnet_arm_y            : int  385 447 474 257 275 176 15 215 335 294 ...
##  $ magnet_arm_z            : int  481 434 413 633 617 516 217 385 520 493 ...
##  $ kurtosis_roll_arm       : logi  NA NA NA NA NA NA ...
##  $ kurtosis_picth_arm      : logi  NA NA NA NA NA NA ...
##  $ kurtosis_yaw_arm        : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_arm       : logi  NA NA NA NA NA NA ...
##  $ skewness_pitch_arm      : logi  NA NA NA NA NA NA ...
##  $ skewness_yaw_arm        : logi  NA NA NA NA NA NA ...
##  $ max_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ max_picth_arm           : logi  NA NA NA NA NA NA ...
##  $ max_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ min_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ min_pitch_arm           : logi  NA NA NA NA NA NA ...
##  $ min_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : logi  NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : logi  NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : logi  NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  -17.7 54.5 57.1 43.1 -101.4 ...
##  $ pitch_dumbbell          : num  25 -53.7 -51.4 -30 -53.4 ...
##  $ yaw_dumbbell            : num  126.2 -75.5 -75.2 -103.3 -14.2 ...
##  $ kurtosis_roll_dumbbell  : logi  NA NA NA NA NA NA ...
##  $ kurtosis_picth_dumbbell : logi  NA NA NA NA NA NA ...
##  $ kurtosis_yaw_dumbbell   : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_dumbbell  : logi  NA NA NA NA NA NA ...
##  $ skewness_pitch_dumbbell : logi  NA NA NA NA NA NA ...
##  $ skewness_yaw_dumbbell   : logi  NA NA NA NA NA NA ...
##  $ max_roll_dumbbell       : logi  NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : logi  NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : logi  NA NA NA NA NA NA ...
##  $ min_roll_dumbbell       : logi  NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : logi  NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : logi  NA NA NA NA NA NA ...
##  $ amplitude_roll_dumbbell : logi  NA NA NA NA NA NA ...
##   [list output truncated]
## 
## Features in traindata that is not in testdata:[1] "classe"
## 
## Features in testdata that is not in traindata:[1] "problem_id"

##STEP2: Clean up the data

start with eliminating the NA variables

cleantrain <- eliminate_NAs(pmltraindata)
cleantest <- eliminate_NAs(pmltestdata)

next eliminating the NULLs

cleantrain <- eliminate_Nulls(cleantrain)
cleantest <- eliminate_Nulls(cleantest)

next eliminating the near zero variance variables

cleantrain <- eliminate_zeroVarFactors(cleantrain)
cleantest <- eliminate_zeroVarFactors(cleantest)

Drop unnecessary varibles for prediction

answer <- cleantest["problem_id"]
drops <- c("problem_id","X")
cleantest <- cleantest[ , !(names(cleantest) %in% drops)]
cleantrain <- cleantrain[ , !(names(cleantrain) %in% drops)]
#do_some_visualisation(cleantrain)

Just explore the data again after exploration

postclean_explore(cleantrain, cleantest)
## =============================
## 'data.frame':	19622 obs. of  58 variables:
##  $ user_name           : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ raw_timestamp_part_1: int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2: int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp      : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 9 ...
##  $ num_window          : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt           : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt          : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt            : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt    : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ gyros_belt_x        : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y        : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z        : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x        : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y        : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z        : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x       : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y       : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z       : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm            : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm           : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm             : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm     : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ gyros_arm_x         : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y         : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z         : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x         : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y         : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z         : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x        : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y        : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z        : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ roll_dumbbell       : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell      : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell        : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ total_accel_dumbbell: int  37 37 37 37 37 37 37 37 37 37 ...
##  $ gyros_dumbbell_x    : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ gyros_dumbbell_y    : num  -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 ...
##  $ gyros_dumbbell_z    : num  0 0 0 -0.02 0 0 0 0 0 0 ...
##  $ accel_dumbbell_x    : int  -234 -233 -232 -232 -233 -234 -232 -234 -232 -235 ...
##  $ accel_dumbbell_y    : int  47 47 46 48 48 48 47 46 47 48 ...
##  $ accel_dumbbell_z    : int  -271 -269 -270 -269 -270 -269 -270 -272 -269 -270 ...
##  $ magnet_dumbbell_x   : int  -559 -555 -561 -552 -554 -558 -551 -555 -549 -558 ...
##  $ magnet_dumbbell_y   : int  293 296 298 303 292 294 295 300 292 291 ...
##  $ magnet_dumbbell_z   : num  -65 -64 -63 -60 -68 -66 -70 -74 -65 -69 ...
##  $ roll_forearm        : num  28.4 28.3 28.3 28.1 28 27.9 27.9 27.8 27.7 27.7 ...
##  $ pitch_forearm       : num  -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.8 -63.8 -63.8 ...
##  $ yaw_forearm         : num  -153 -153 -152 -152 -152 -152 -152 -152 -152 -152 ...
##  $ total_accel_forearm : int  36 36 36 36 36 36 36 36 36 36 ...
##  $ gyros_forearm_x     : num  0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 ...
##  $ gyros_forearm_y     : num  0 0 -0.02 -0.02 0 -0.02 0 -0.02 0 0 ...
##  $ gyros_forearm_z     : num  -0.02 -0.02 0 0 -0.02 -0.03 -0.02 0 -0.02 -0.02 ...
##  $ accel_forearm_x     : int  192 192 196 189 189 193 195 193 193 190 ...
##  $ accel_forearm_y     : int  203 203 204 206 206 203 205 205 204 205 ...
##  $ accel_forearm_z     : int  -215 -216 -213 -214 -214 -215 -215 -213 -214 -215 ...
##  $ magnet_forearm_x    : int  -17 -18 -18 -16 -17 -9 -18 -9 -16 -22 ...
##  $ magnet_forearm_y    : num  654 661 658 658 655 660 659 660 653 656 ...
##  $ magnet_forearm_z    : num  476 473 469 469 473 478 470 474 476 473 ...
##  $ classe              : Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
## 
## 'data.frame':	20 obs. of  57 variables:
##  $ user_name           : Factor w/ 6 levels "adelmo","carlitos",..: 6 5 5 1 4 5 5 5 2 3 ...
##  $ raw_timestamp_part_1: int  1323095002 1322673067 1322673075 1322832789 1322489635 1322673149 1322673128 1322673076 1323084240 1322837822 ...
##  $ raw_timestamp_part_2: int  868349 778725 342967 560311 814776 510661 766645 54671 916313 384285 ...
##  $ cvtd_timestamp      : Factor w/ 11 levels "02/12/2011 13:33",..: 5 10 10 1 6 11 11 10 3 2 ...
##  $ num_window          : int  74 431 439 194 235 504 485 440 323 664 ...
##  $ roll_belt           : num  123 1.02 0.87 125 1.35 -5.92 1.2 0.43 0.93 114 ...
##  $ pitch_belt          : num  27 4.87 1.82 -41.6 3.33 1.59 4.44 4.15 6.72 22.4 ...
##  $ yaw_belt            : num  -4.75 -88.9 -88.5 162 -88.6 -87.7 -87.3 -88.5 -93.7 -13.1 ...
##  $ total_accel_belt    : int  20 4 5 17 3 4 4 4 4 18 ...
##  $ gyros_belt_x        : num  -0.5 -0.06 0.05 0.11 0.03 0.1 -0.06 -0.18 0.1 0.14 ...
##  $ gyros_belt_y        : num  -0.02 -0.02 0.02 0.11 0.02 0.05 0 -0.02 0 0.11 ...
##  $ gyros_belt_z        : num  -0.46 -0.07 0.03 -0.16 0 -0.13 0 -0.03 -0.02 -0.16 ...
##  $ accel_belt_x        : int  -38 -13 1 46 -8 -11 -14 -10 -15 -25 ...
##  $ accel_belt_y        : int  69 11 -1 45 4 -16 2 -2 1 63 ...
##  $ accel_belt_z        : int  -179 39 49 -156 27 38 35 42 32 -158 ...
##  $ magnet_belt_x       : int  -13 43 29 169 33 31 50 39 -6 10 ...
##  $ magnet_belt_y       : int  581 636 631 608 566 638 622 635 600 601 ...
##  $ magnet_belt_z       : int  -382 -309 -312 -304 -418 -291 -315 -305 -302 -330 ...
##  $ roll_arm            : num  40.7 0 0 -109 76.1 0 0 0 -137 -82.4 ...
##  $ pitch_arm           : num  -27.8 0 0 55 2.76 0 0 0 11.2 -63.8 ...
##  $ yaw_arm             : num  178 0 0 -142 102 0 0 0 -167 -75.3 ...
##  $ total_accel_arm     : int  10 38 44 25 29 14 15 22 34 32 ...
##  $ gyros_arm_x         : num  -1.65 -1.17 2.1 0.22 -1.96 0.02 2.36 -3.71 0.03 0.26 ...
##  $ gyros_arm_y         : num  0.48 0.85 -1.36 -0.51 0.79 0.05 -1.01 1.85 -0.02 -0.5 ...
##  $ gyros_arm_z         : num  -0.18 -0.43 1.13 0.92 -0.54 -0.07 0.89 -0.69 -0.02 0.79 ...
##  $ accel_arm_x         : int  16 -290 -341 -238 -197 -26 99 -98 -287 -301 ...
##  $ accel_arm_y         : int  38 215 245 -57 200 130 79 175 111 -42 ...
##  $ accel_arm_z         : int  93 -90 -87 6 -30 -19 -67 -78 -122 -80 ...
##  $ magnet_arm_x        : int  -326 -325 -264 -173 -170 396 702 535 -367 -420 ...
##  $ magnet_arm_y        : int  385 447 474 257 275 176 15 215 335 294 ...
##  $ magnet_arm_z        : int  481 434 413 633 617 516 217 385 520 493 ...
##  $ roll_dumbbell       : num  -17.7 54.5 57.1 43.1 -101.4 ...
##  $ pitch_dumbbell      : num  25 -53.7 -51.4 -30 -53.4 ...
##  $ yaw_dumbbell        : num  126.2 -75.5 -75.2 -103.3 -14.2 ...
##  $ total_accel_dumbbell: int  9 31 29 18 4 29 29 29 3 2 ...
##  $ gyros_dumbbell_x    : num  0.64 0.34 0.39 0.1 0.29 -0.59 0.34 0.37 0.03 0.42 ...
##  $ gyros_dumbbell_y    : num  0.06 0.05 0.14 -0.02 -0.47 0.8 0.16 0.14 -0.21 0.51 ...
##  $ gyros_dumbbell_z    : num  -0.61 -0.71 -0.34 0.05 -0.46 1.1 -0.23 -0.39 -0.21 -0.03 ...
##  $ accel_dumbbell_x    : int  21 -153 -141 -51 -18 -138 -145 -140 0 -7 ...
##  $ accel_dumbbell_y    : int  -15 155 155 72 -30 166 150 159 25 -20 ...
##  $ accel_dumbbell_z    : int  81 -205 -196 -148 -5 -186 -190 -191 9 7 ...
##  $ magnet_dumbbell_x   : int  523 -502 -506 -576 -424 -543 -484 -515 -519 -531 ...
##  $ magnet_dumbbell_y   : int  -528 388 349 238 252 262 354 350 348 321 ...
##  $ magnet_dumbbell_z   : int  -56 -36 41 53 312 96 97 53 -32 -164 ...
##  $ roll_forearm        : num  141 109 131 0 -176 150 155 -161 15.5 13.2 ...
##  $ pitch_forearm       : num  49.3 -17.6 -32.6 0 -2.16 1.46 34.5 43.6 -63.5 19.4 ...
##  $ yaw_forearm         : num  156 106 93 0 -47.9 89.7 152 -89.5 -139 -105 ...
##  $ total_accel_forearm : int  33 39 34 43 24 43 32 47 36 24 ...
##  $ gyros_forearm_x     : num  0.74 1.12 0.18 1.38 -0.75 -0.88 -0.53 0.63 0.03 0.02 ...
##  $ gyros_forearm_y     : num  -3.34 -2.78 -0.79 0.69 3.1 4.26 1.8 -0.74 0.02 0.13 ...
##  $ gyros_forearm_z     : num  -0.59 -0.18 0.28 1.8 0.8 1.35 0.75 0.49 -0.02 -0.07 ...
##  $ accel_forearm_x     : int  -110 212 154 -92 131 230 -192 -151 195 -212 ...
##  $ accel_forearm_y     : int  267 297 271 406 -93 322 170 -331 204 98 ...
##  $ accel_forearm_z     : int  -149 -118 -129 -39 172 -144 -175 -282 -217 -7 ...
##  $ magnet_forearm_x    : int  -714 -237 -51 -233 375 -300 -678 -109 0 -403 ...
##  $ magnet_forearm_y    : int  419 791 698 783 -787 800 284 -619 652 723 ...
##  $ magnet_forearm_z    : int  617 873 783 521 91 884 585 -32 469 512 ...
## =============================
## =============================
## 
## Features in traindata that is not in testdata:
## Warning in trainfeatures != testfeatures: longer object length is not a
## multiple of shorter object length
## [1] "classe"
## 
## Features in testdata that is not in traindata:
## Warning in trainfeatures != testfeatures: longer object length is not a
## multiple of shorter object length
## [1] NA

now combine the training and test data so that when we do prediction we dont get the errors like mismatch of type of predictors ("Type of predictors in new data do not match that of the training data.")

testnumrows <- nrow(cleantest)
cleantest[,"classe"] <- NA
combinedData <- rbind(cleantrain,cleantest)
allrows <- nrow(combinedData)
finaltest <- combinedData[(allrows-testnumrows+1):allrows, ]
trainingset <- combinedData[1:(allrows-testnumrows), ]

We are done with the data clean up stage

##STEP3: Do Principal component analysis

nonNumericVars <- c("user_name","classe","cvtd_timestamp")
pcadata <- combinedData[ , !(names(combinedData) %in% nonNumericVars)]
pca <- prcomp(pcadata, scale = TRUE)
biplot(pca, scale = 0)

std_dev <- pca$sdev
pr_var <- std_dev^2
prop_varex <- pr_var/sum(pr_var)

plot(prop_varex, xlab = "Principal Component",
           ylab = "Proportion of Variance Explained",
           type = "b")

plot(cumsum(prop_varex), xlab = "Principal Component",
           ylab = "Cumulative Proportion of Variance Explained",
           type = "b")

selectcols = which(prop_varex >= 0.002)
dataAfterPCA <- pcadata[,selectcols]
pr_cols <- names(dataAfterPCA)
pr_cols <- c(pr_cols, "classe")



train.pca.data <- trainingset[,(names(trainingset) %in% pr_cols)]
test.pca.data <- finaltest[,(names(finaltest) %in% pr_cols)]

Now we are done with the principal component analysis. Next step is to split the data for cross validatiopn do the simple train test and validation split

##STEP4: Create cross validation datasets

training.rows <- createDataPartition(train.pca.data$classe,  p = 0.8, list = FALSE)


train.batch <- train.pca.data[training.rows, ]
test.batch <- train.pca.data[-training.rows, ]

Now we have the data split into three: the train.batch, test.batch and the finaltest dataset

##STEP5: Model creation and Validation

dependentvarname <- "classe"
AllVariables <- names(train.pca.data)
PredictorVariables <- setdiff(AllVariables, dependentvarname)
Formula <- formula(paste( paste(dependentvarname, " ~ ", sep =""), 
                            paste(PredictorVariables, collapse=" + ")))
print(Formula)
## classe ~ raw_timestamp_part_1 + raw_timestamp_part_2 + num_window + 
##     roll_belt + pitch_belt + yaw_belt + total_accel_belt + gyros_belt_x + 
##     gyros_belt_y + gyros_belt_z + accel_belt_x + accel_belt_y + 
##     accel_belt_z + magnet_belt_x + magnet_belt_y + magnet_belt_z + 
##     roll_arm + pitch_arm + yaw_arm + total_accel_arm + gyros_arm_x + 
##     gyros_arm_y + gyros_arm_z + accel_arm_x + accel_arm_y + accel_arm_z + 
##     magnet_arm_x + magnet_arm_y + magnet_arm_z + roll_dumbbell + 
##     pitch_dumbbell + yaw_dumbbell + total_accel_dumbbell + gyros_dumbbell_x + 
##     gyros_dumbbell_y + gyros_dumbbell_z

Fit the random forest model

rf_fit <- randomForest(Formula,
                       data=train.batch, 
                       importance=TRUE, 
                       ntree=2000)
pred.rf <- predict(rf_fit, test.batch)
confusionMatrix(pred.rf, test.batch$classe)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1116    0    0    0    0
##          B    0  759    0    0    0
##          C    0    0  684    0    0
##          D    0    0    0  643    1
##          E    0    0    0    0  720
## 
## Overall Statistics
##                                      
##                Accuracy : 0.9997     
##                  95% CI : (0.9986, 1)
##     No Information Rate : 0.2845     
##     P-Value [Acc > NIR] : < 2.2e-16  
##                                      
##                   Kappa : 0.9997     
##  Mcnemar's Test P-Value : NA         
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            1.0000   1.0000   1.0000   1.0000   0.9986
## Specificity            1.0000   1.0000   1.0000   0.9997   1.0000
## Pos Pred Value         1.0000   1.0000   1.0000   0.9984   1.0000
## Neg Pred Value         1.0000   1.0000   1.0000   1.0000   0.9997
## Prevalence             0.2845   0.1935   0.1744   0.1639   0.1838
## Detection Rate         0.2845   0.1935   0.1744   0.1639   0.1835
## Detection Prevalence   0.2845   0.1935   0.1744   0.1642   0.1835
## Balanced Accuracy      1.0000   1.0000   1.0000   0.9998   0.9993
accuracy.rf <- (round(mean(pred.rf == test.batch$classe),3))

The accuracy in the random forest model

print(accuracy.rf)
## [1] 1

Fit the Linear discriminant analysis model

model_lda <- train(Formula, method = "lda", data = train.batch)
## Loading required package: MASS
pred.lda <- predict(model_lda, test.batch)
confusionMatrix(pred.lda, test.batch$classe)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   A   B   C   D   E
##          A 787  86 214 111  72
##          B  89 500  96  46 133
##          C  99  96 270  39  55
##          D 129  53  87 411  96
##          E  12  24  17  36 365
## 
## Overall Statistics
##                                           
##                Accuracy : 0.5947          
##                  95% CI : (0.5791, 0.6101)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.4848          
##  Mcnemar's Test P-Value : < 2.2e-16       
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.7052   0.6588  0.39474   0.6392  0.50624
## Specificity            0.8279   0.8850  0.91077   0.8887  0.97220
## Pos Pred Value         0.6197   0.5787  0.48301   0.5296  0.80396
## Neg Pred Value         0.8760   0.9153  0.87693   0.9263  0.89738
## Prevalence             0.2845   0.1935  0.17436   0.1639  0.18379
## Detection Rate         0.2006   0.1275  0.06882   0.1048  0.09304
## Detection Prevalence   0.3237   0.2202  0.14249   0.1978  0.11573
## Balanced Accuracy      0.7666   0.7719  0.65276   0.7640  0.73922
accuracy.lda <-(round(mean(pred.lda == test.batch$classe),3))

The accuracy in the LDA model is

print(accuracy.lda)
## [1] 0.595
if(accuracy.rf >= accuracy.lda) {

  #'
  #' Select Random Forest model for the final prediction
  #' 
  #' 
  pred.final <- predict(rf_fit, finaltest)
  
  
}else {
  #'
  #' Select LDA model for the final prediction
  #' 
  #' 
  pred.final <- predict(model_lda, finaltest)
}

This is the final prediction output.

print(pred.final)
## 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 
##     B     A     B     A     A     E     D     B     A     A     B     C 
## 19635 19636 19637 19638 19639 19640 19641 19642 
##     B     A     E     E     A     B     B     B 
## Levels: A B C D E

title: "mysoln.R" author: "sdhandap" date: "Sun Aug 21 00:44:54 2016"

About

Exercises practical machine learning coursera

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published