-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME
41 lines (30 loc) · 1.57 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Young-Jae Choi, POSTECH, Korea, Rep. of.
Inquiries: https://github.com/ssrokyz/RAG/discussions
Note) " >> ABC " means running the command "ABC" via bash command line.
" }} ABC " means a line in python scripts.
If you need some theoretical stuff, check our report below.
[1] Young-Jae Choi and Seung-Hoon Jhi, Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator. J. Phys. Chem. B 124, 8704-8710 (2020).
Please cite the paper above, when your work is somewhat related to our work.
>>>>>>>>>>>>>>>>>>>>>> Getting RAG <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
1. You must install all prerequisites below.
prerequisite: numpy, ase
For example,
>> pip install --user numpy ase
2. You can clone the RAG repository by,
>> git clone https://github.com/ssrokyz/RAG.git
>>>>>>>>>>>>>>>>>>>>>> WITHOUT INSTALLATION <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
3-1. Just copy the RAG.py script into the task folder, for example,
>> cd RAG
>> cp RAG.py example/
>> cd example/
Then import RAG by including a line in the job script,
}} from RAG import random_atoms_gen as rag
or alternatively,
>>>>>>>>>>>>>>>>>>>>>> WITH INSTALLATION (optional) <<<<<<<<<<<<<<<<<<<<<<
3-2. If you copy current directory to python library folder, for example,
>> cp -r RAG/ $HOME/.local/lib/python3.6/site-packages/
Now, you can import RAG by, like,
}} from RAG.RAG import random_atoms_gen as rag
>>>>>>>>>>>>>>>>>>>>>> RUN <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
4. Run the job script, for example,
>> python make-RAG-structures.py