-
Notifications
You must be signed in to change notification settings - Fork 0
License
ssrokyz/RAG
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Young-Jae Choi, POSTECH, Korea, Rep. of. Inquiries: https://github.com/ssrokyz/RAG/discussions Note) " >> ABC " means running the command "ABC" via bash command line. " }} ABC " means a line in python scripts. If you need some theoretical stuff, check our report below. [1] Young-Jae Choi and Seung-Hoon Jhi, Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator. J. Phys. Chem. B 124, 8704-8710 (2020). Please cite the paper above, when your work is somewhat related to our work. >>>>>>>>>>>>>>>>>>>>>> Getting RAG <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 1. You must install all prerequisites below. prerequisite: numpy, ase For example, >> pip install --user numpy ase 2. You can clone the RAG repository by, >> git clone https://github.com/ssrokyz/RAG.git >>>>>>>>>>>>>>>>>>>>>> WITHOUT INSTALLATION <<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 3-1. Just copy the RAG.py script into the task folder, for example, >> cd RAG >> cp RAG.py example/ >> cd example/ Then import RAG by including a line in the job script, }} from RAG import random_atoms_gen as rag or alternatively, >>>>>>>>>>>>>>>>>>>>>> WITH INSTALLATION (optional) <<<<<<<<<<<<<<<<<<<<<< 3-2. If you copy current directory to python library folder, for example, >> cp -r RAG/ $HOME/.local/lib/python3.6/site-packages/ Now, you can import RAG by, like, }} from RAG.RAG import random_atoms_gen as rag >>>>>>>>>>>>>>>>>>>>>> RUN <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 4. Run the job script, for example, >> python make-RAG-structures.py
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published