-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from sashaDoubov/elem_wise_mul
Add elementwise multiplication
- Loading branch information
Showing
3 changed files
with
115 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
from stk.ops.linear_ops import dds, dsd, sdd | ||
from stk.ops.matrix_ops import ones_like, row_indices, sum, to_dense, to_sparse | ||
from stk.ops.eltwise_ops import mul |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
from stk.matrix import Matrix | ||
|
||
def mul(a, b): | ||
"""Performs element-wise multiplication of matrices a and b. | ||
It is the user's responsibility to make sure that a and b | ||
follow the same matrix topology. This function assumes it is safe | ||
to use the topoplogy of a. | ||
Args: | ||
a: stk.Matrix. | ||
b: stk.Matrix with a's matrix topology. | ||
Returns: | ||
stk.Matrix where the entries correspond to torch.mul(a, b). | ||
""" | ||
assert isinstance(a, Matrix) | ||
assert isinstance(b, Matrix) | ||
assert a.size() == b.size() | ||
|
||
return Matrix(a.size(), | ||
a.data * b.data, | ||
a.row_indices, | ||
a.column_indices, | ||
a.offsets, | ||
a.column_indices_t, | ||
a.offsets_t, | ||
a.block_offsets_t) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
import unittest | ||
import itertools | ||
import torch | ||
from absl.testing import parameterized | ||
|
||
import stk | ||
from stk.ops.linear_ops_test import allclose, _dense_and_sparse | ||
|
||
_MATRIX_SIZES = ( | ||
(128, 128, 0.0), | ||
(256, 256, 0.5), | ||
(2048, 1024, 0.8), | ||
(512, 128, 0.0), | ||
(128, 512, 0.0), | ||
(1024, 512, 0.0), | ||
(1024, 512, 0.5), | ||
(1024, 512, 0.75), | ||
(512, 1024, 0.0), | ||
(512, 1024, 0.5), | ||
(512, 1024, 0.75), | ||
(1024, 1024, 0.0), | ||
(1024, 1024, 0.5), | ||
(1024, 1024, 0.75), | ||
) | ||
|
||
_DTYPE = ( | ||
torch.float16, torch.bfloat16 | ||
) | ||
|
||
def _generate_testcases(): | ||
testcases = itertools.product(_MATRIX_SIZES, _DTYPE) | ||
testcases = [(*size, 128, dtype) for | ||
(size, dtype) in testcases] | ||
return testcases | ||
|
||
_ELTWISE_OP_TESTS = _generate_testcases() | ||
|
||
def _dense_and_sparse_like(x, std=0.1): | ||
dense_data = torch.randn_like(x.data, device=x.device) * std | ||
sparse = stk.Matrix(x.size(), | ||
dense_data, | ||
x.row_indices, | ||
x.column_indices, | ||
x.offsets) | ||
dense = stk.ops.to_dense(sparse) | ||
|
||
return (dense.requires_grad_(True), | ||
sparse.requires_grad_(True)) | ||
|
||
@parameterized.parameters(_ELTWISE_OP_TESTS) | ||
class EltwiseOpsTest(parameterized.TestCase): | ||
|
||
def testEltwiseMul(self, m, n, sparsity, blocking, dtype): | ||
|
||
a_dense, a = _dense_and_sparse(m, n, sparsity, blocking, dtype) | ||
b_dense, b = _dense_and_sparse_like(a) | ||
|
||
out = stk.ops.mul(a, b) | ||
expected_out = torch.mul(a_dense, b_dense) | ||
|
||
# Compute the gradients w.r.t. the inputs. | ||
expected_out.sum().backward() | ||
stk.ops.sum(out).backward() | ||
|
||
# Validate the results. | ||
out = stk.ops.to_dense(out) | ||
self.assertEqual(out.dim(), 2) | ||
self.assertEqual(expected_out.size(), out.size()) | ||
self.assertTrue(allclose(out, expected_out)) | ||
|
||
# LHS gradient. | ||
grad = stk.ops.to_dense(a.grad) | ||
expected_grad = a_dense.grad | ||
self.assertEqual(grad.dim(), 2) | ||
self.assertEqual(expected_grad.size(), grad.size()) | ||
self.assertTrue(allclose(grad, expected_grad)) | ||
|
||
# RHS gradient. | ||
grad = stk.ops.to_dense(b.grad) | ||
expected_grad = b_dense.grad | ||
self.assertEqual(grad.dim(), 2) | ||
self.assertEqual(expected_grad.size(), grad.size()) | ||
self.assertTrue(allclose(grad, expected_grad)) | ||
|
||
if __name__ == '__main__': | ||
unittest.main() |