Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding distributions and log scores for K-Normal-Mixture #265

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 112 additions & 0 deletions ngboost/distns/mixture_normal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
"""The NGBoost mixture of K Normal distributions and scores"""

import numpy as np
from scipy.stats import norm
from sklearn.cluster import KMeans

from ngboost.distns.distn import RegressionDistn
from ngboost.scores import LogScore


class NormalMixtureLogScore(LogScore):
def score(self, Y):
return -np.log(np.sum(norm.pdf(Y, self.loc, self.scale) * self.mixprop, axis=0))

def d_score(self, Y):
K = self.K_
D = np.zeros((len(Y), (3 * K - 1)))

D[:, range(K)] = np.transpose(
-1
/ (np.sum(norm.pdf(Y, self.loc, self.scale) * self.mixprop, axis=0))
* self.mixprop
* ((Y - self.loc) / pow(self.scale, 2))
* norm.pdf(Y, self.loc, self.scale)
)

D[:, range(K, (2 * K))] = np.transpose(
-1
/ (np.sum(norm.pdf(Y, self.loc, self.scale) * self.mixprop, axis=0))
* self.mixprop
* ((pow((Y - self.loc), 2) - pow(self.scale, 2)) / pow(self.scale, 2))
* norm.pdf(Y, self.loc, self.scale)
)

D_alpha = np.transpose(
-1
/ (np.sum(norm.pdf(Y, self.loc, self.scale) * self.mixprop, axis=0))
* (
norm.pdf(Y, self.loc, self.scale)[range(K - 1)]
- norm.pdf(Y, self.loc, self.scale)[K - 1]
)
)

m = np.einsum(
"ij, kj -> jik", self.mixprop[range(K - 1)], self.mixprop[range(K - 1)]
)
d = np.einsum("ijj -> ij", m)
d -= np.einsum("i...", self.mixprop[range(K - 1)])

D[:, range(2 * K, (3 * K - 1))] = np.einsum("ij, ijl -> il", D_alpha, -m)
return D


def k_normal_mixture(K):
class NormalMixture(RegressionDistn):

K_ = K
n_params = 3 * K - 1
scores = [NormalMixtureLogScore]

def __init__(self, params):

# save the parameters
self._params = params

# create other objects that will be useful later
self.loc = params[0:K]
self.logscale = params[K : (2 * K)]
self.scale = np.exp(self.logscale)

mix_params = np.zeros((K, params.shape[1]))
mix_params[0 : (K - 1), :] = params[(2 * K) : (3 * K - 1)]
exp_mixprop = np.exp(mix_params)
self.mixprop = exp_mixprop / np.sum(exp_mixprop, axis=0)

def fit(Y):
kmeans = KMeans(n_clusters=K).fit(Y.reshape(-1, 1))
pred = kmeans.predict(Y.reshape(-1, 1))
loc = []
scale = []
prop = []
for i in range(K):
obs = Y[pred == i]
loc = np.append(loc, np.mean(obs))
scale = np.append(scale, np.std(obs))
prop = np.append(prop, len(obs) / len(Y))
return np.concatenate(
[
loc,
np.log(scale),
np.log(prop[range(K - 1)] / (1 - sum(prop[range(K - 1)]))),
]
)

def sample(self, m):
component = np.array(
[ # it's stupid that there is no fast vectorized multinomial in python
np.random.multinomial(n=1, pvals=self.mixprop[:, i], size=m)
for i in range(self.mixprop.shape[1])
]
).transpose(1, 2, 0)
samples = norm.rvs(self.loc, self.scale, size=(m,) + self.loc.shape)
return np.sum(component * samples, axis=1)

def mean(self,):
np.sum(self.mixprop * self.loc, axis=0)

@property
def params(self):
return {"loc": self.loc, "scale": self.scale, "mix_prop": self.mixprop}

return NormalMixture