Skip to content

Commit

Permalink
Added some documentation to control.ergm() about interactions of MCML…
Browse files Browse the repository at this point in the history
…E.*, MCMC.*, and other parameters, and converted some citations to Rdpack.
  • Loading branch information
krivit committed Jan 17, 2024
1 parent c51a6d8 commit 8a951cf
Show file tree
Hide file tree
Showing 2 changed files with 73 additions and 35 deletions.
59 changes: 38 additions & 21 deletions R/control.ergm.R
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,45 @@
#
# Copyright 2003-2023 Statnet Commons
################################################################################
#' Auxiliary for Controlling ERGM Fitting
#'
#' Auxiliary function as user interface for fine-tuning 'ergm' fitting.
#' Auxiliary function for fine-tuning ERGM fitting.
#'
#' This function is only used within a call to the [ergm()] function.
#' See the \code{usage} section in [ergm()] for details.
#'
#' See the \code{usage} section in [ergm()] for details. Also see the
#' Details section about some of the interactions between its
#' arguments.
#'
#' Different estimation methods or components of estimation have
#' different efficient tuning parameters; and we generally want to use
#' the estimation controls to inform the simulation controls in
#' [control.simulate.ergm()]. To accomplish this, `control.ergm()` uses
#' method-specific controls, with the method identified by the prefix:
#' \describe{
#'
#' \item{`CD`}{Contrastive Divergence estimation \insertCite{Kr17u}{ergm}}
#'
#' \item{`MPLE`}{Maximum Pseudo-Likelihood Estimation \insertCite{StIk90p}{ergm}}
#'
#' \item{`MCMLE`}{Monte-Carlo MLE \insertCite{HuHa06i,HuHu12i}{ergm}}
#'
#' \item{`SA`}{Stochastic Approximation via Robbins--Monro \insertCite{RoMo51s,Sn02m}{ergm}}
#'
#' \item{`SAN`}{Simulated Annealing used when `target.stats` are specified for [ergm()]}
#'
#' \item{`obs`}{Missing data MLE \insertCite{HaGi10m}{ergm}}
#'
#' \item{`init`}{Affecting how initial parameter guesses are obtained}
#'
#' \item{`parallel`}{Affecting parallel processing}
#'
#' \item{`MCMC`}{Low-level MCMC simulation controls}
#'
#' }
#'
#' Corresponding `MCMC` controls will usually be overwritten by the
#' method-specific ones. After the estimation finishes, they will
#' contain the last MCMC parameters used.
#'
#'
#' @templateVar MCMCType MCMC
#'
#' @param drop Logical: If TRUE, terms whose observed statistic values are at
Expand Down Expand Up @@ -441,32 +473,17 @@
#' @template seed
#' @template control_MCMC_packagenames
#' @template control_dots
#'
#' @return A list with arguments as components.
#' @seealso [ergm()]. The \code{\link{control.simulate}} function
#' performs a similar function for \code{\link{simulate.ergm}};
#' \code{\link{control.gof}} performs a similar function for \code{\link{gof}}.
#' @references \insertAllCited{}
#'
#' * Snijders, T.A.B. (2002), Markov Chain Monte
#' Carlo Estimation of Exponential Random Graph Models. Journal of Social
#' Structure. Available from
#' \url{https://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf}.
#'
#'
#' * Firth (1993), Bias Reduction in Maximum Likelihood Estimates.
#' Biometrika, 80: 27-38.
#'
#'
#' * Hunter, D. R. and M. S. Handcock (2006), Inference in curved
#' exponential family models for networks. Journal of Computational and
#' Graphical Statistics, 15: 565-583.
#'
#'
#' * Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving
#' Simulation-Based Algorithms for Fitting ERGMs, Journal of Computational and
#' Graphical Statistics, 21: 920-939.
#'
#'
#' * Kristoffer Sahlin. Estimating convergence of Markov chain Monte Carlo
#' simulations. Master's Thesis. Stockholm University, 2011.
#' \url{https://www2.math.su.se/matstat/reports/master/2011/rep2/report.pdf}
Expand Down
49 changes: 35 additions & 14 deletions man/control.ergm.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit 8a951cf

Please sign in to comment.