Skip to content

Commit

Permalink
Implemented ginv_eigen(), an alternative to MASS:ginv() that uses eig…
Browse files Browse the repository at this point in the history
…endecomposition instead of QR decompsition and its scaled and xTAx variants. Bumped minor version to 4.10.
  • Loading branch information
krivit committed Dec 18, 2023
1 parent 3694b7a commit d6f579b
Show file tree
Hide file tree
Showing 5 changed files with 106 additions and 22 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: statnet.common
Version: 4.9.0-436
Date: 2023-06-27
Version: 4.10.0-438
Date: 2023-12-18
Title: Common R Scripts and Utilities Used by the Statnet Project Software
Authors@R: c(
person(c("Pavel", "N."), "Krivitsky", role=c("aut","cre"), email="[email protected]", comment=c(ORCID="0000-0002-9101-3362", affiliation="University of New South Wales")),
Expand Down
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,7 @@ export(eval_lhs.formula)
export(filter_rhs.formula)
export(fixed.pval)
export(forkTimeout)
export(ginv_eigen)
export(handle.controls)
export(is.SPD)
export(is.linwmatrix)
Expand Down Expand Up @@ -140,8 +141,10 @@ export(update_snctrl)
export(vector.namesmatch)
export(xAxT)
export(xTAx)
export(xTAx_eigen)
export(xTAx_qrsolve)
export(xTAx_qrssolve)
export(xTAx_seigen)
export(xTAx_solve)
export(xTAx_ssolve)
importFrom(coda,as.mcmc)
Expand Down
76 changes: 64 additions & 12 deletions R/matrix.utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,27 @@ sandwich_solve <- function(A, B, ...) {
solve(A, t(solve(A, B, ...)), ...)
}

#' @describeIn xTAx Evaluate \eqn{x' A^{-1} x} for vector \eqn{x} and
#' matrix \eqn{A} (symmetric, nonnegative-definite) via
#' eigendecomposition; returns `rank` and `nullity` as attributes
#' just in case subsequent calculations (e.g., hypothesis test
#' degrees of freedom) are affected.
#'
#' Decompose \eqn{A = P L P'} for \eqn{L} diagonal matrix of
#' eigenvalues and \eqn{P} orthogonal. Then \eqn{A^{-1} = P L^{-1}
#' P'}.
#'
#' Substituting, \deqn{x' A^{-1} x = x' P L^{-1} P' x
#' = h' L^{-1} h} for \eqn{h = P' x}.
#'
#' @export
xTAx_eigen <- function(x, A, tol=sqrt(.Machine$double.eps), ...) {
e <- eigen(A, symmetric=TRUE)
keep <- e$values > max(tol * e$values[1L], 0)
h <- drop(crossprod(x, e$vectors[, keep, drop=FALSE]))
structure(sum(h*h/e$values[keep]), rank = sum(keep), nullity = sum(!keep))
}


#' Wrappers around matrix algebra functions that pre-*s*cale their
#' arguments
Expand All @@ -96,16 +117,23 @@ sandwich_solve <- function(A, B, ...) {
#' functions first scale the matrix's rows and/or columns by its
#' diagonal elements and then undo the scaling on the result.
#'
#' `ssolve()`, `sginv()`, and `snearPD()` wrap [solve()],
#' [MASS::ginv()], and [Matrix::nearPD()], respectively. `srcond()`
#' returns the reciprocal condition number of [rcond()] net of the
#' above scaling. `xTAx_ssolve`, `xTAx_qrssolve`, and
#' `sandwich_ssolve` wrap the corresponding \pkg{statnet.common}
#' functions.
#' `ginv_eigen()` reimplements [MASS::ginv()] but using
#' eigendecomposition rather than SVD; this means that it is only
#' suitable for symmetric matrices, but that detection of negative
#' eigenvalues is more robust.
#'
#' `ssolve()`, `sginv()`, `sginv_eigen()`, and `snearPD()` wrap
#' [solve()], [MASS::ginv()], `ginv_eigen()`, and [Matrix::nearPD()],
#' respectively. `srcond()` returns the reciprocal condition number of
#' [rcond()] net of the above scaling. `xTAx_ssolve()`,
#' `xTAx_qrssolve()`, `xTAx_seigen()`, and `sandwich_ssolve()` wrap
#' the corresponding \pkg{statnet.common} functions.
#'
#' @param snnd assume that the matrix is symmetric non-negative
#' definite (SNND). If it's "obvious" that it's not (e.g., negative
#' diagonal elements), an error is raised.
#' definite (SNND). This typically entails scaling that converts
#' covariance to correlation and use of eigendecomposition rather
#' than singular-value decomposition. If it's "obvious" that the matrix is
#' not SSND (e.g., negative diagonal elements), an error is raised.
#'
#' @param x,a,b,X,A,B,tol,... corresponding arguments of the wrapped functions.
#'
Expand Down Expand Up @@ -135,22 +163,46 @@ ssolve <- function(a, b, ..., snnd = TRUE) {
#' @rdname ssolve
#'
#' @export
sginv <- function(X, ..., snnd = TRUE) {
sginv <- function(X, ..., snnd = TRUE){
d <- diag(as.matrix(X))
d <- ifelse(d==0, 1, 1/d)

if(snnd) {
d <- sqrt(d)
if(anyNA(d)) stop("Matrix a has negative elements on the diagonal, and snnd=TRUE.")
dd <- rep(d, each = length(d)) * d
X <- X * dd
MASS::ginv(X, ...) * dd
ginv_eigen(X * dd, ...) * dd
} else {
dd <- rep(d, each = length(d))
MASS::ginv(X*d, ...) * dd
MASS::ginv(X * dd, ...) * t(dd)
}
}

#' @rdname ssolve
#' @export
ginv_eigen <- function(X, tol = sqrt(.Machine$double.eps), ...){
e <- eigen(X, symmetric=TRUE)
keep <- e$values > max(tol * e$values[1L], 0)
tcrossprod(e$vectors[, keep, drop=FALSE] / rep(e$values[keep],each=ncol(X)), e$vectors[, keep, drop=FALSE])
}


#' @rdname ssolve
#'
#' @export
xTAx_seigen <- function(x, A, tol=sqrt(.Machine$double.eps), ...) {
d <- diag(as.matrix(A))
d <- ifelse(d<=0, 0, 1/d)

d <- sqrt(d)
dd <- rep(d, each = length(d)) * d

A <- A * dd
x <- x * d

xTAx_eigen(x, A, tol=tol, ...)
}

#' @rdname ssolve
#'
#' @export
Expand Down
29 changes: 21 additions & 8 deletions man/ssolve.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

16 changes: 16 additions & 0 deletions man/xTAx.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit d6f579b

Please sign in to comment.