Skip to content

studiawan/nerlogparser

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nerlogparser: An automatic log parser

This is source code implementation of our paper entitled "Automatic log parser to support forensic analysis" published in the 16th Australian Digital Forensics Conference, pp. 1-10, 2018. We name the tool as nerlogparser because it uses named entity recognition (NER) technique to parse log files. This repository is a fork from sequence_tagging by Guillaume Genthial.

Requirements

  1. Python 3.5
  2. TensorFlow 1.4.1
  3. nltk 3.4

How to install

  1. Create a new directory for nerlogparser in your home directory

    mkdir $HOME/nerlogparser

  2. Create virtual environment in newly created directory with specific Python version (3.5)

    virtualenv $HOME/nerlogparser -p /usr/bin/python3.5

  3. Activate the virtual environment

    source $HOME/nerlogparser/bin/activate

  4. Install nerlogparser

    pip install nerlogparser

How to run

  1. Make sure your are still in the virtual environment mode

  2. For example, run nerlogparser to parse authentication log file from /var/log/auth.log and print output to the screen

    nerlogparser -i /var/log/auth.log

  3. We can save parsing results in an output file such as parsed-auth.json. At the moment, the only supported file output format is JSON.

    nerlogparser -i /var/log/auth.log -o parsed-auth.json

  4. Run nerlogpaser help

    nerlogparser -h

Import from your Python script

import pprint
from nerlogparser.nerlogparser import Nerlogparser  

parser = Nerlogparser()
parsed_logs = parser.parse_logs('/var/log/auth.log')  

for line_id, parsed in parsed_logs.items():
    print('Line:', line_id)
    pprint.pprint(parsed)
    print()

License

Apache License 2.0. Please check LICENSE.

About

Automatic log parser to support forensic analysis

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%