Link to youtube video
This notebook demonstrates the prediction of the bitcoin price by the neural network model. We are using long short term memory (LSTM)
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes
you need to install all the necessary libraries n order to run the project
sklearn
tensorflow
pandas
matplotlib
pip install sklearn
pip install tensorflow
pip install pandas
pip install matplotlib
- Getting real-time crptocurrency data(bitcoin).
- Prepare data for training and testing.
- Predict the price of crptocurrency using LSTM neural network (deep learning).
- Visualize the prediction results.
You can collect the current data for Bitcoin from Yahoo Finance
You can preprocess the data before dividing it into traning and testing
data_training = data[data['Date']< '2020-01-01'].copy()
data_training
data_test = data[data['Date']> '2020-01-01'].copy()
data_test
regressor = Sequential()
regressor.add(LSTM(units = 60, activation = 'relu', return_sequences = True, input_shape = (X_train.shape[1], 5)))
regressor.add(Dropout(0.2))
regressor.compile(optimizer = 'adam', loss='mean_absolute_error')
regressor.fit(X_train, Y_train, epochs = 20, batch_size =50)
Y_pred = regressor.predict(X_test)
Y_pred, Y_test
plt.figure(figsize=(14,5))
plt.plot(Y_test, color = 'red', label = 'Real Bitcoin Price')
plt.plot(Y_pred, color = 'green', label = 'Predicted Bitcoin Price')
plt.title('Bitcoin Price Prediction using RNN-LSTM')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()