-
Notifications
You must be signed in to change notification settings - Fork 0
svetlana-v/mnist
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
How to use Read the ML Engine manual: https://cloud.google.com/ml-engine/docs/tensorflow/getting-started-training-prediction ====================================================================================== TRAINING THE MODEL LOCALLY ====================================================================================== Define environmental variables: MODEL_DIR=<folder_name> (e.g ./output) Run the task locally: gcloud ml-engine local train \ --module-name trainer_tf.task \ --package-path trainer_tf \ --job-dir $MODEL_DIR ====================================================================================== TRAINING THE MODEL IN THE CLOUD ====================================================================================== Define environmental variables: JOB_NAME=<job_name> OUTPUT_PATH=gs://$BUCKET_NAME/$JOB_NAME Run the task in the Google Cloud (e.g. trainer_name = trainer_tf | trainer_keras | trainer_tf_with_LRD | trainer_tf_softmaxreg): gcloud ml-engine jobs submit training $JOB_NAME \ --job-dir $OUTPUT_PATH \ --runtime-version 1.8 \ --module-name <trainer_name>.task \ --package-path <trainer_name>/ \ --region $REGION \ --verbosity debug ====================================================================================== CREATING VERSION IN THE CLOUD ====================================================================================== gcloud ml-engine models create "<model_name>" DEPLOYMENT_SOURCE=gs://<BUCKET_NAME>/<JOB_NAME>/export/ gcloud ml-engine versions create "<version_name>"\ --model "<model_name>" --origin $DEPLOYMENT_SOURCE ====================================================================================== GETTING ONLINE PREDICTIONS ====================================================================================== MODEL_NAME="[MODEL-NAME]" INPUT_DATA_FILE=“input.json"VERSION_NAME="[VERSION-NAME]” gcloud ml-engine predict --model $MODEL_NAME \ --version $VERSION_NAME \ --json-instances $INPUT_DATA_FILE As an input.json you can use "image.json", "images_3.json" or "images_10.json" in this example
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published