Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ROIWarping layer described in the winning solution of ILSVRC & MSCOCO 2015 competition (http://arxiv.org/abs/1512.04412). #37

Open
wants to merge 16 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
*.sw*
*.bak*
build
build/*
595 changes: 595 additions & 0 deletions ROIWarping.cu

Large diffs are not rendered by default.

74 changes: 74 additions & 0 deletions ROIWarping.lua
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
local ROIWarping,parent = torch.class('inn.ROIWarping', 'nn.Module')
local C = inn.C

--function ROIWarping:__init(W,H,spatial_scale)
function ROIWarping:__init(H,W)
parent.__init(self)
assert(W and H, 'W and H have to be provided')
self.W = W
self.H = H
--self.spatial_scale = spatial_scale or 1

self.grid_gen = inn.ROIWarpingGridGenerator(self.H, self.W)
self.sample = inn.ROIWarpingBilinearSample(self.H, self.W)

self.gradInput = {}
end

--function ROIWarping:setSpatialScale(scale)
-- self.spatial_scale = scale
-- return self
--end

function ROIWarping:updateOutput(input)
assert(#input == 2 or #input == 3)
local data = input[1]
local rois = input[2]
local delta_rois
if #input == 3 then
delta_rois = input[3]
else -- #input == 2
self.delta_rois = self.delta_rois or rois.new()
self.delta_rois:resizeAs(rois):zero()
self.delta_rois[{{}, 1}] = rois[{{}, 1}]
delta_rois = self.delta_rois
end

if torch.type(data) == 'torch.CudaTensor' then
self.grid_gen:cuda()
self.sample:cuda()
end

self.grid_gen:updateOutput({rois, delta_rois})
self.sample:updateOutput({data, self.grid_gen.output_tmp[1], self.grid_gen.output_tmp[2], self.grid_gen.output_tmp[3]})

self.output = self.sample.output

return self.output
end

function ROIWarping:updateGradInput(input,gradOutput)
local data = input[1]
local rois = input[2]
local delta_rois
if #input == 3 then
delta_rois = input[3]
else -- #input == 2
self.delta_rois = self.delta_rois or data.new()
self.delta_rois:resizeAs(rois):zero()
self.delta_rois[{{}, 1}] = rois[{{}, 1}]
delta_rois = self.delta_rois
end

if torch.type(data) == 'torch.CudaTensor' then
self.grid_gen:cuda()
self.sample:cuda()
end

self.sample:updateGradInput({data, self.grid_gen.output_tmp[1], self.grid_gen.output_tmp[2], self.grid_gen.output_tmp[3]}, gradOutput)
self.grid_gen:updateGradInput({rois, delta_rois}, {self.sample.gradInput[2], self.sample.gradInput[3]})

self.gradInput = {self.sample.gradInput[1], self.grid_gen.gradInput[1], self.grid_gen.gradInput[2]}

return self.gradInput
end
Loading