-
Notifications
You must be signed in to change notification settings - Fork 56
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Update repo structure * added the whole frontend * Update repo structure * Adding object detection model * added object detection model * added api * resolved some conflicts * model training --------- Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Tanisha Lalwani <[email protected]>
- Loading branch information
1 parent
564abe7
commit ccb69e2
Showing
4 changed files
with
204 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torchvision | ||
from torchvision.models.detection import fasterrcnn_resnet50_fpn | ||
from torchvision.models import resnet50 | ||
import cv2 | ||
import numpy as np | ||
from torch.utils.data import Dataset, DataLoader | ||
import pandas as pd | ||
|
||
class ExamDataset(Dataset): | ||
def __init__(self, image_paths, annotations, transform=None): | ||
self.image_paths = image_paths | ||
self.annotations = annotations | ||
self.transform = transform | ||
|
||
def __len__(self): | ||
return len(self.image_paths) | ||
|
||
def __getitem__(self, idx): | ||
# Load image | ||
image = cv2.imread(self.image_paths[idx]) | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
|
||
# Get annotations | ||
boxes = self.annotations[idx]['boxes'] | ||
labels = self.annotations[idx]['labels'] | ||
|
||
if self.transform: | ||
image = self.transform(image) | ||
|
||
target = { | ||
'boxes': torch.FloatTensor(boxes), | ||
'labels': torch.LongTensor(labels) | ||
} | ||
|
||
return image, target | ||
|
||
class InvigilationSystem: | ||
def __init__(self): | ||
# Initialize FRCNN for student detection and behavior analysis | ||
self.frcnn = fasterrcnn_resnet50_fpn(pretrained=True) | ||
num_classes = 3 # background, cheating, not_cheating | ||
in_features = self.frcnn.roi_heads.box_predictor.cls_score.in_features | ||
self.frcnn.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) | ||
|
||
# Initialize CNN for face recognition | ||
self.face_cnn = resnet50(pretrained=True) | ||
num_features = self.face_cnn.fc.in_features | ||
self.face_cnn.fc = nn.Linear(num_features, len(self.known_faces)) | ||
|
||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
self.frcnn.to(self.device) | ||
self.face_cnn.to(self.device) | ||
|
||
def train_models(self, train_loader, num_epochs=10): | ||
# Training parameters | ||
params = [p for p in self.frcnn.parameters() if p.requires_grad] | ||
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) | ||
|
||
for epoch in range(num_epochs): | ||
self.frcnn.train() | ||
total_loss = 0 | ||
|
||
for images, targets in train_loader: | ||
images = [image.to(self.device) for image in images] | ||
targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets] | ||
|
||
loss_dict = self.frcnn(images, targets) | ||
losses = sum(loss for loss in loss_dict.values()) | ||
|
||
optimizer.zero_grad() | ||
losses.backward() | ||
optimizer.step() | ||
|
||
total_loss += losses.item() | ||
|
||
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {total_loss/len(train_loader):.4f}") | ||
|
||
def process_frame(self, frame): | ||
self.frcnn.eval() | ||
self.face_cnn.eval() | ||
|
||
# Transform frame | ||
transform = torchvision.transforms.Compose([ | ||
torchvision.transforms.ToTensor(), | ||
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | ||
]) | ||
|
||
frame_tensor = transform(frame).unsqueeze(0).to(self.device) | ||
|
||
with torch.no_grad(): | ||
predictions = self.frcnn(frame_tensor) | ||
|
||
# Process predictions | ||
boxes = predictions[0]['boxes'].cpu().numpy() | ||
scores = predictions[0]['scores'].cpu().numpy() | ||
labels = predictions[0]['labels'].cpu().numpy() | ||
|
||
results = [] | ||
for box, score, label in zip(boxes, scores, labels): | ||
if score > 0.5: # Confidence threshold | ||
x1, y1, x2, y2 = box.astype(int) | ||
face_crop = frame[y1:y2, x1:x2] | ||
|
||
# Face recognition | ||
face_tensor = transform(face_crop).unsqueeze(0).to(self.device) | ||
face_prediction = self.face_cnn(face_tensor) | ||
student_id = torch.argmax(face_prediction).item() | ||
|
||
results.append({ | ||
'box': box, | ||
'score': score, | ||
'is_cheating': label == 1, | ||
'student_id': student_id | ||
}) | ||
|
||
return results | ||
|
||
def generate_report(self, results): | ||
report_data = [] | ||
for result in results: | ||
report_data.append({ | ||
'timestamp': pd.Timestamp.now(), | ||
'student_id': result['student_id'], | ||
'confidence': result['score'], | ||
'behavior': 'Suspicious' if result['is_cheating'] else 'Normal' | ||
}) | ||
|
||
df = pd.DataFrame(report_data) | ||
df.to_excel('invigilation_report.xlsx', index=False) | ||
return df | ||
|
||
class FastRCNNPredictor(nn.Module): | ||
def __init__(self, in_channels, num_classes): | ||
super(FastRCNNPredictor, self).__init__() | ||
self.cls_score = nn.Linear(in_channels, num_classes) | ||
self.bbox_pred = nn.Linear(in_channels, num_classes * 4) | ||
|
||
def forward(self, x): | ||
if x.dim() == 4: | ||
torch.flatten(x, start_dim=1) | ||
scores = self.cls_score(x) | ||
bbox_deltas = self.bbox_pred(x) | ||
return scores, bbox_deltas |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,3 @@ | ||
|
||
import cv2 | ||
import mediapipe as mp | ||
import numpy as np | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import os | ||
import torch | ||
from torchvision import transforms | ||
from model_training import InvigilationSystem, ExamDataset | ||
|
||
def prepare_dataset(data_dir): | ||
image_paths = [] | ||
annotations = [] | ||
|
||
# Load images and annotations from your data directory | ||
for image_file in os.listdir(os.path.join(data_dir, 'images')): | ||
if image_file.endswith(('.jpg', '.png')): | ||
image_paths.append(os.path.join(data_dir, 'images', image_file)) | ||
|
||
# Load corresponding annotation file | ||
annotation_file = os.path.join( | ||
data_dir, | ||
'annotations', | ||
image_file.replace('.jpg', '.json').replace('.png', '.json') | ||
) | ||
with open(annotation_file, 'r') as f: | ||
annotation = json.load(f) | ||
annotations.append(annotation) | ||
|
||
return image_paths, annotations | ||
|
||
def main(): | ||
# Set up data transformations | ||
transform = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | ||
]) | ||
|
||
# Prepare dataset | ||
data_dir = 'path/to/your/dataset' | ||
image_paths, annotations = prepare_dataset(data_dir) | ||
|
||
# Create dataset and dataloader | ||
dataset = ExamDataset(image_paths, annotations, transform=transform) | ||
dataloader = torch.utils.data.DataLoader( | ||
dataset, | ||
batch_size=2, | ||
shuffle=True, | ||
collate_fn=lambda x: tuple(zip(*x)) | ||
) | ||
|
||
# Initialize and train the model | ||
system = InvigilationSystem() | ||
system.train_models(dataloader, num_epochs=10) | ||
|
||
# Save the trained model | ||
torch.save({ | ||
'frcnn_state_dict': system.frcnn.state_dict(), | ||
'face_cnn_state_dict': system.face_cnn.state_dict() | ||
}, 'invigilation_model.pth') | ||
|
||
if __name__ == '__main__': | ||
main() |