Skip to content

Commit

Permalink
Merge branch 'main' of https://github.com/tduretz/SeismicQ
Browse files Browse the repository at this point in the history
  • Loading branch information
PYamato committed Aug 24, 2023
2 parents 03c0bcf + 1bdc27d commit a5b8dec
Show file tree
Hide file tree
Showing 2 changed files with 251 additions and 5 deletions.
10 changes: 5 additions & 5 deletions examples/Wave2D_Day3.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ function MainSource()


# Source parameters
𝑓₀ = 200 # Central frequency of the source [Hz]
𝑓₀ = 50 # Central frequency of the source [Hz]
t₀ = 1.2/𝑓₀
isrc = Int((Nc.x/2)+1)
jsrc = Int((Nc.y/2)+1)
Expand Down Expand Up @@ -87,10 +87,10 @@ function MainSource()
@. L.i.yx[:,2:end-1] = (V.c.y[2:end,2:end-1] - V.c.y[1:end-1,2:end-1])/Δ.x
@. L.j.yx[2:end-1,:] = (V.v.y[2:end,:] - V.v.y[1:end-1,:])/Δ.x

@. L.i.yy[:,2:end-1] = (V.v.y[:,2:end] - V.v.y[:,2:end])/Δ.y
@. L.i.yy[:,2:end-1] = (V.v.y[:,2:end] - V.v.y[:,1:end-1])/Δ.y
@. L.j.yy[2:end-1,:] = (V.c.y[2:end-1,2:end] - V.c.y[2:end-1,1:end-1])/Δ.y

@. L.i.xy[:,2:end-1] = (V.v.x[:,2:end] - V.v.x[:,2:end])/Δ.y
@. L.i.xy[:,2:end-1] = (V.v.x[:,2:end] - V.v.x[:,1:end-1])/Δ.y
@. L.j.xy[2:end-1,:] = (V.c.x[2:end-1,2:end] - V.c.x[2:end-1,1:end-1])/Δ.y


Expand Down Expand Up @@ -149,14 +149,14 @@ function MainSource()
*((τ.j.xy[3:end-1,2:end-1]-τ.j.xy[2:end-2,2:end-1])/Δ.x
+.i.yy[2:end-1,3:end-1]-τ.i.yy[2:end-1,2:end-2])/Δ.y
- (P.i[2:end-1,3:end-1]-P.i[2:end-1,2:end-2])/Δ.y
- 0.0*f_ext.v[2:end-1,2:end-1]))
- f_ext.v[2:end-1,2:end-1]))

@. V.c.y[2:end-1,2:end-1] = (V.c.y[2:end-1,2:end-1]
+ Δt/ρ.c[2:end-1,2:end-1]
*((τ.i.xy[2:end,2:end-1]-τ.i.xy[1:end-1,2:end-1])/Δ.x
+.j.yy[2:end-1,2:end]-τ.j.yy[2:end-1,1:end-1])/Δ.y
- (P.j[2:end-1,2:end]-P.j[2:end-1,1:end-1])/Δ.y
- 0.0*f_ext.c[2:end-1,2:end-1]))
- f_ext.c[2:end-1,2:end-1]))


# # Absorbing boundary Cerjean et al. (1985)
Expand Down
246 changes: 246 additions & 0 deletions examples/Wave2D_Sh_Day4.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,246 @@
using SeismicQ, Plots

function MainSource()
visu=true
# Spatial extent
l = (x = 25.0, y = 12.5)

# Mechanical parameters
ρ₀ = 1500.0
K₀ = 1.e9
G₀ = 1.e8
c₀ = sqrt((K₀+4/3*G₀)/ρ₀)

# Discretization
Nc = (x = 100, y = 50)
Δ = (x = l.x/Nc.x, y = l.y/Nc.y, z=1.0)
X = (v = (x= LinRange(0,l.x,Nc.x+1) , y= LinRange(0,l.y,Nc.y+1)),
c = (x= LinRange(0-Δ.x/2,l.x+Δ.x/2,Nc.x+2) , y= LinRange(0-Δ.y/2,l.y+Δ.y/2,Nc.y+2)),
i = (x= LinRange(0,l.x,Nc.x+1) , y= LinRange(0-Δ.y/2,l.y+Δ.y/2,Nc.y+2)),
j = (x= LinRange(0-Δ.x/2,l.x+Δ.x/2,Nc.x+2) , y= LinRange(0,l.y,Nc.y+1)))



# Source parameters
𝑓₀ = 100 # Central frequency of the source [Hz]
t₀ = 1.2/𝑓₀
src = (i=Int((Nc.x/2)+1),j=Int((Nc.y/2)+1))
# src = (i=[Int(10/Δx) ],j=Int((Nc.y/2)+1))
# Time domain
Δt = min(1e10, 0.3*Δ.x/c₀, 0.3*Δ.y/c₀ ) # Courant criteria from wavespeed
Nt = 2000
Nout = 100
t = -t₀

# Storage on centers # +2 for ghost nodes for BCs
szv = (Nc.x+1, Nc.y+1)
szc = (Nc.x+2, Nc.y+2)
szi = (Nc.x+1, Nc.y+2)
szj = (Nc.x+2, Nc.y+1)
# Storage on i and j meshes
K = (i= ones(szi)*K₀, j= ones(szj)*K₀)
G = (i= ones(szi)*G₀, j= ones(szj)*G₀)
∇V = (i = zeros(szi), j = zeros(szj))
P = (i = zeros(szi), j = zeros(szj))
L = (i = (xx=zeros(szi), xy=zeros(szi), yx=zeros(szi), yy=zeros(szi),zx=zeros(szi),zy=zeros(szi)),
j = (xx=zeros(szj), xy=zeros(szj), yx=zeros(szj), yy=zeros(szj),zx=zeros(szj),zy=zeros(szj)))

ε̇ = ( i=(xx=zeros(szi), yy=zeros(szi), zz=zeros(szi), xy=zeros(szi),xz=zeros(szi),yz=zeros(szi)),
j=(xx=zeros(szj), yy=zeros(szj), zz=zeros(szj), xy=zeros(szj),xz=zeros(szj),yz=zeros(szj)))

τ = ( i=(xx=zeros(szi), yy=zeros(szi), zz=zeros(szi), xy=zeros(szi),xz=zeros(szi),yz=zeros(szi)),
j=(xx=zeros(szj), yy=zeros(szj), zz=zeros(szj), xy=zeros(szj),xz=zeros(szj),yz=zeros(szj)))

# Storage on v and c meshes
V = ( v=(x=zeros(szv), y=zeros(szv), z=zeros(szv)),
c=(x=zeros(szc), y=zeros(szc), z=zeros(szc)))

ρ = (v=ones(szv)*ρ₀, c=ones(szc)*ρ₀)
f_ext = (v=zeros(szv) , c=zeros(szc))
Vnorm = zeros(szc)
# BC
Lbc = 1.
# # BC on v and c mesh
bc_filt_V = (v=Cerjean2D(X.v,Lbc,l,Δ),c=Cerjean2D(X.c,Lbc,l,Δ))
bc_filt_tau = (i=Cerjean2D(X.i,Lbc,l,Δ),j=Cerjean2D(X.j,Lbc,l,Δ))
Vmax = 0.0
# bc_filtW_V = (v=1.0 .- exp.(-(X.v.x*ones(size(X.v.y))' .-0*l.x).^2/Lbc.^2),
# c=1.0 .- exp.(-(X.c.x*ones(size(X.c.y))' .-0*l.x).^2/Lbc.^2))
# bc_filtW_tau = (i=1.0 .- exp.(-(X.i.x*ones(size(X.i.y))' .-0l.x).^2/Lbc.^2),
# j=1.0 .- exp.(-(X.j.x*ones(size(X.i.y))' .-0l.x).^2/Lbc.^2))
# bc_filtE_v = 1.0 .- exp.(-(xv.- L.x).^2/Lbc.^2)
# # BC on i and j mesh
# bc_filtE_c = 1.0 .- exp.(-(xc.- Lx).^2/Lbc.^2)
# bc_filtW_c = 1.0 .- exp.(-(xc.-0Lx).^2/Lbc.^2)

# # Time loop
@views @time for it=1:Nt

# Compute Ricker function
t += Δt
a = Ricker(t, t₀, 𝑓₀)
# for isrc = 1:nsrc
# f_ext.v[src.i[isrc],src.j[isrc]] += ρ.v[src.i[isrc],src.j[isrc]]*a
# end
f_ext.v[src.i,src.j] = ρ.v[src.i,src.j]*a
# Velocity gradient components
#@show size(V.v.y[2:end,:])
#@show size(L.j.x[2:end-1,2:end-1])

@. L.i.xx[:,2:end-1] = (V.c.x[2:end,2:end-1] - V.c.x[1:end-1,2:end-1])/Δ.x
@. L.j.xx[2:end-1,:] = (V.v.x[2:end,:] - V.v.x[1:end-1,:])/Δ.x

@. L.i.yx[:,2:end-1] = (V.c.y[2:end,2:end-1] - V.c.y[1:end-1,2:end-1])/Δ.x
@. L.j.yx[2:end-1,:] = (V.v.y[2:end,:] - V.v.y[1:end-1,:])/Δ.x

@. L.i.yy[:,2:end-1] = (V.v.y[:,2:end] - V.v.y[:,1:end-1])/Δ.y
@. L.j.yy[2:end-1,:] = (V.c.y[2:end-1,2:end] - V.c.y[2:end-1,1:end-1])/Δ.y

@. L.i.xy[:,2:end-1] = (V.v.x[:,2:end] - V.v.x[:,1:end-1])/Δ.y
@. L.j.xy[2:end-1,:] = (V.c.x[2:end-1,2:end] - V.c.x[2:end-1,1:end-1])/Δ.y

@. L.i.zy[:,2:end-1] = (V.v.z[:,2:end] - V.v.z[:,1:end-1])/Δ.y
@. L.j.zy[2:end-1,:] = (V.c.z[2:end-1,2:end] - V.c.z[2:end-1,1:end-1])/Δ.y

@. L.i.zx[:,2:end-1] = (V.c.z[2:end,2:end-1] - V.c.z[1:end-1,2:end-1])/Δ.x
@. L.j.zx[2:end-1,:] = (V.v.z[2:end,:] - V.v.z[1:end-1,:])/Δ.x


# # Divergence
@. ∇V.i = L.i.xx + L.i.yy
@. ∇V.j = L.j.xx + L.j.yy

# # Deviatoric strain rate
@. ε̇.i.xx = L.i.xx - 1//3*∇V.i
@. ε̇.j.xx = L.j.xx - 1//3*∇V.j

@. ε̇.i.yy = L.i.yy - 1//3*∇V.i
@. ε̇.j.yy = L.j.yy - 1//3*∇V.j

@. ε̇.i.zz = - 1//3*∇V.i
@. ε̇.j.zz = - 1//3*∇V.j

@. ε̇.i.xy = 1//2*(L.i.xy + L.i.yx)
@. ε̇.j.xy = 1//2*(L.j.xy + L.j.yx)

# in 2D Lxz and Lyz are zero
@. ε̇.i.xz = 1//2*(L.i.zx)
@. ε̇.j.xz = 1//2*(L.j.zx)

@. ε̇.i.yz = 1//2*(L.i.zy)
@. ε̇.j.yz = 1//2*(L.j.zy)

# # Stress update
@. τ.i.xx = f_shear(G.i)*Δt*(ε̇.i.xx) + f_relax(G.i)*τ.i.xx
@. τ.j.xx = f_shear(G.j)*Δt*(ε̇.j.xx) + f_relax(G.j)*τ.j.xx

@. τ.i.yy = f_shear(G.i)*Δt*(ε̇.i.yy) + f_relax(G.i)*τ.i.yy
@. τ.j.yy = f_shear(G.j)*Δt*(ε̇.j.yy) + f_relax(G.j)*τ.j.yy

@. τ.i.zz = f_shear(G.i)*Δt*(ε̇.i.zz) + f_relax(G.i)*τ.i.zz
@. τ.j.zz = f_shear(G.j)*Δt*(ε̇.j.zz) + f_relax(G.j)*τ.j.zz

@. τ.i.xy = f_shear(G.i)*Δt*(ε̇.i.xy) + f_relax(G.i)*τ.i.xy
@. τ.j.xy = f_shear(G.j)*Δt*(ε̇.j.xy) + f_relax(G.j)*τ.j.xy

@. τ.i.xz = f_shear(G.i)*Δt*(ε̇.i.xz) + f_relax(G.i)*τ.i.xz
@. τ.j.xz = f_shear(G.j)*Δt*(ε̇.j.xz) + f_relax(G.j)*τ.j.xz

@. τ.i.yz = f_shear(G.i)*Δt*(ε̇.i.yz) + f_relax(G.i)*τ.i.yz
@. τ.j.yz = f_shear(G.j)*Δt*(ε̇.j.yz) + f_relax(G.j)*τ.j.yz

# # Pressure update
@. P.i = P.i - Δt*f_bulk(K.i)*∇V.i
@. P.j = P.j - Δt*f_bulk(K.j)*∇V.j

# # Linear momentum balance
@. V.v.x[2:end-1,2:end-1] = (V.v.x[2:end-1,2:end-1]
+ Δt/ρ.v[2:end-1,2:end-1]
*((τ.j.xx[3:end-1,2:end-1]-τ.j.xx[2:end-2,2:end-1])/Δ.x
+.i.xy[2:end-1,3:end-1]-τ.i.xy[2:end-1,2:end-2])/Δ.y
- (P.j[3:end-1,2:end-1]-P.j[2:end-2,2:end-1])/Δ.x
- 0.0*f_ext.v[2:end-1,2:end-1]))

@. V.c.x[2:end-1,2:end-1] = (V.c.x[2:end-1,2:end-1]
+ Δt/ρ.c[2:end-1,2:end-1]
*((τ.i.xx[2:end,2:end-1]-τ.i.xx[1:end-1,2:end-1])/Δ.x
+.j.xy[2:end-1,2:end]-τ.j.xy[2:end-1,1:end-1])/Δ.y
- (P.i[2:end,2:end-1]-P.i[1:end-1,2:end-1])/Δ.x
- 0.0*f_ext.c[2:end-1,2:end-1]))

@. V.v.y[2:end-1,2:end-1] = (V.v.y[2:end-1,2:end-1]
+ Δt/ρ.v[2:end-1,2:end-1]
*((τ.j.xy[3:end-1,2:end-1]-τ.j.xy[2:end-2,2:end-1])/Δ.x
+.i.yy[2:end-1,3:end-1]-τ.i.yy[2:end-1,2:end-2])/Δ.y
- (P.i[2:end-1,3:end-1]-P.i[2:end-1,2:end-2])/Δ.y
- 0.0*f_ext.v[2:end-1,2:end-1]))

@. V.c.y[2:end-1,2:end-1] = (V.c.y[2:end-1,2:end-1]
+ Δt/ρ.c[2:end-1,2:end-1]
*((τ.i.xy[2:end,2:end-1]-τ.i.xy[1:end-1,2:end-1])/Δ.x
+.j.yy[2:end-1,2:end]-τ.j.yy[2:end-1,1:end-1])/Δ.y
- (P.j[2:end-1,2:end]-P.j[2:end-1,1:end-1])/Δ.y
- 0.0*f_ext.c[2:end-1,2:end-1]))

# the two terms in dPdz and dtauzzdz cancel in linear elastic case ... but i am not sure with other rheologies so I have leavec them
@. V.v.z[2:end-1,2:end-1] = (V.v.z[2:end-1,2:end-1]
+ Δt/ρ.v[2:end-1,2:end-1]
*((τ.j.xz[3:end-1,2:end-1]-τ.j.xz[2:end-2,2:end-1])/Δ.x
+.i.yz[2:end-1,3:end-1]-τ.i.yz[2:end-1,2:end-2])/Δ.y
- f_ext.v[2:end-1,2:end-1]))

@. V.c.z[2:end-1,2:end-1] = (V.c.z[2:end-1,2:end-1]
+ Δt/ρ.c[2:end-1,2:end-1]
*((τ.i.xz[2:end,2:end-1]-τ.i.xz[1:end-1,2:end-1])/Δ.x
+.j.yz[2:end-1,2:end]-τ.j.yz[2:end-1,1:end-1])/Δ.y
- f_ext.c[2:end-1,2:end-1]))

# # Absorbing boundary Cerjean et al. (1985)

@. V.v.x = V.v.x * bc_filt_V.v
@. V.v.y = V.v.y * bc_filt_V.v
@. V.v.z = V.v.z * bc_filt_V.v
@. V.c.x = V.c.x * bc_filt_V.c
@. V.c.y = V.c.y * bc_filt_V.c
@. V.c.z = V.c.z * bc_filt_V.c
# @. P = P * bc_filtW_c
# @. τ.xx = τ.xx * bc_filtW_c
# @. V.x = V.x * bc_filtE_v
# @. P = P * bc_filtE_c
# @. τ.xx = τ.xx * bc_filtE_c

# Visualisation
if mod(it, Nout)==0 && visu==true
# @. Vnorm = sqrt(V.c.x^2+V.c.y^2)
# Vmax = max(Vmax, maximum(V.v.z))
display( heatmap(X.v.x,X.v.y, V.v.z' , clim=(-1.e-4,1.e-4)))
sleep(0.1)
end
end
#@show Vmax
end

function f_bulk(K)
return K
end

function f_shear(G)
return 2*G
end
function f_relax(G)
return 1.
end

function Cerjean2D(X,Lbc,l,Δ)
return ((1.0 .- exp.(-(X.x*ones(size(X.y))'.-0*l.x).^2/Lbc.^2))
.*(1.0 .- exp.(-(X.x*ones(size(X.y))' .- l.x).^2/Lbc.^2))
.*(1.0 .- exp.(-(ones(size(X.x))*X.y' .-0*l.y).^2/Lbc.^2))
.*(1.0 .- exp.(-(ones(size(X.x))*X.y' .- l.y).^2/Lbc.^2)))

# (1.0 .- exp.(-(X.v.x*ones(size(X.v.y))' .-0*l.x).^2/Lbc.^2))
# .*(1.0 .- exp.(-(X.v.x*ones(size(X.v.y))' .-l.x).^2/Lbc.^2))
# .*(1.0 .- exp.(-(X.v.x*ones(size(X.v.y))' .-0*l.y).^2/Lbc.^2))
# .*(1.0 .- exp.(-(X.v.x*ones(size(X.v.y))' .-l.y).^2/Lbc.^2))
end

MainSource()

0 comments on commit a5b8dec

Please sign in to comment.