A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.
This is a customized version of the cookiecutter-data-science project from DrivenData.
- Python 3.x
- Cookiecutter Python package >= 1.4.0
pip install cookiecutter
cookiecutter https://github.com/testedminds/data-science-template
The directory structure of your new project looks like this:
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third-party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering)
│ and a short `-` delimited description, e.g. `1.0-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
└── src <- Source code for use in this project.
├── __init__.py <- Makes src a Python module
│
├── data <- Scripts to download or generate data
│ └── raw_to_processed.py
│
├── features <- Scripts to turn raw data into features for modeling
│ └── build_features.py
│
├── models <- Scripts to train models and then use trained models to make
│ │ predictions
│ ├── predict_model.py
│ └── train_model.py
│
└── visualization <- Scripts to create exploratory and results oriented visualizations
└── visualize.py
pip install -r requirements.txt
py.test tests