-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5167848
commit 1bf8c6d
Showing
7 changed files
with
10,444 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -103,4 +103,4 @@ venv.bak/ | |
# mypy | ||
.mypy_cache/ | ||
|
||
.idea/ | ||
.idea/ |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
# Artificial Neural Network | ||
|
||
# Installing Theano | ||
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git | ||
|
||
# Installing Tensorflow | ||
# pip install tensorflow | ||
|
||
# Installing Keras | ||
# pip install --upgrade keras | ||
|
||
# Part 1 - Data Preprocessing | ||
|
||
# Importing the libraries | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
# Importing the dataset | ||
dataset = pd.read_csv('Churn_Modelling.csv') | ||
X = dataset.iloc[:, 3:13].values | ||
y = dataset.iloc[:, 13].values | ||
|
||
# Encoding categorical data | ||
from sklearn.preprocessing import LabelEncoder, OneHotEncoder | ||
labelencoder_X_1 = LabelEncoder() | ||
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1]) | ||
labelencoder_X_2 = LabelEncoder() | ||
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2]) | ||
onehotencoder = OneHotEncoder(categorical_features = [1]) | ||
X = onehotencoder.fit_transform(X).toarray() | ||
X = X[:, 1:] | ||
|
||
# Splitting the dataset into the Training set and Test set | ||
from sklearn.model_selection import train_test_split | ||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 0) | ||
|
||
# Feature Scaling | ||
from sklearn.preprocessing import StandardScaler | ||
sc = StandardScaler() | ||
X_train = sc.fit_transform(X_train) | ||
X_test = sc.transform(X_test) | ||
|
||
# Part 2 - Now let's make the ANN! | ||
|
||
# Importing the Keras libraries and packages | ||
|
||
import keras | ||
import tensorflow as tf | ||
|
||
config = tf.ConfigProto( device_count = {'GPU': 1 , 'CPU': 4} ) | ||
sess = tf.Session(config=config) | ||
keras.backend.set_session(sess) | ||
|
||
from keras.models import Sequential | ||
from keras.layers import Dense | ||
|
||
# Initialising the ANN | ||
classifier = Sequential() | ||
|
||
# Adding the input layer and the first hidden layer | ||
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11)) | ||
|
||
# Adding the second hidden layer | ||
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu')) | ||
|
||
# Adding the output layer | ||
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) | ||
|
||
# Compiling the ANN | ||
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) | ||
|
||
# Fitting the ANN to the Training set | ||
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100) | ||
|
||
# Part 3 - Making predictions and evaluating the model | ||
|
||
# Predicting the Test set results | ||
y_pred = classifier.predict(X_test) | ||
y_pred = (y_pred > 0.5) | ||
|
||
# Making the Confusion Matrix | ||
from sklearn.metrics import confusion_matrix | ||
cm = confusion_matrix(y_test, y_pred) | ||
|
||
from sklearn.metrics import classification_report | ||
cr = classification_report(y_test, y_pred) | ||
print(cr) | ||
|
||
# X_hw = dict.fromkeys(dataset.columns[3:13]) | ||
# X_hw['Geography'] = 0 # France | ||
# X_hw['CreditScore'] = 600 | ||
# X_hw['Gender'] = 1 # Male | ||
# X_hw['Age'] = 40 | ||
# X_hw['Tenure'] = 3 | ||
# X_hw['Balance'] = 60000 | ||
# X_hw['NumOfProducts'] = 2 | ||
# X_hw['HasCrCard'] = 1 # yes | ||
# X_hw['IsActiveMember'] = 1 # yes | ||
# X_hw['EstimatedSalary'] = 50000 | ||
|
||
X_hw = [0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000] | ||
X_hw = np.array(X_hw) | ||
X_hw = X_hw.reshape(1, -1) | ||
X_hw = sc.transform(X_hw) | ||
|
||
y_hw_pred = classifier.predict(X_hw) | ||
y_hw_pred > 0.5 | ||
# from tensorflow.python.client import device_lib | ||
# print(device_lib.list_local_devices()) | ||
# | ||
# from keras import backend as K | ||
# K.tensorflow_backend._get_available_gpus() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# Artificial Neural Network | ||
|
||
# Installing Theano | ||
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git | ||
|
||
# Installing Tensorflow | ||
# pip install tensorflow | ||
|
||
# Installing Keras | ||
# pip install --upgrade keras | ||
|
||
# Part 1 - Data Preprocessing | ||
|
||
# Importing the libraries | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
# Importing the dataset | ||
dataset = pd.read_csv('Churn_Modelling.csv') | ||
X = dataset.iloc[:, 3:13].values | ||
y = dataset.iloc[:, 13].values | ||
|
||
# Encoding categorical data | ||
from sklearn.preprocessing import LabelEncoder, OneHotEncoder | ||
labelencoder_X_1 = LabelEncoder() | ||
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1]) | ||
labelencoder_X_2 = LabelEncoder() | ||
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2]) | ||
onehotencoder = OneHotEncoder(categorical_features = [1]) | ||
X = onehotencoder.fit_transform(X).toarray() | ||
X = X[:, 1:] | ||
|
||
# Splitting the dataset into the Training set and Test set | ||
from sklearn.model_selection import train_test_split | ||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) | ||
|
||
# Feature Scaling | ||
from sklearn.preprocessing import StandardScaler | ||
sc = StandardScaler() | ||
X_train = sc.fit_transform(X_train) | ||
X_test = sc.transform(X_test) | ||
|
||
# Part 2 - Now let's make the ANN! | ||
|
||
# Importing the Keras libraries and packages | ||
import keras | ||
from keras.models import Sequential | ||
from keras.layers import Dense | ||
|
||
# Initialising the ANN | ||
classifier = Sequential() | ||
|
||
# Adding the input layer and the first hidden layer | ||
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11)) | ||
|
||
# Adding the second hidden layer | ||
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu')) | ||
|
||
# Adding the output layer | ||
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) | ||
|
||
# Compiling the ANN | ||
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) | ||
|
||
# Fitting the ANN to the Training set | ||
classifier.fit(X_train, y_train, batch_size = 10, epochs = 100) | ||
|
||
# Part 3 - Making predictions and evaluating the model | ||
|
||
# Predicting the Test set results | ||
y_pred = classifier.predict(X_test) | ||
y_pred = (y_pred > 0.5) | ||
|
||
# Predicting a single new observation | ||
"""Predict if the customer with the following informations will leave the bank: | ||
Geography: France | ||
Credit Score: 600 | ||
Gender: Male | ||
Age: 40 | ||
Tenure: 3 | ||
Balance: 60000 | ||
Number of Products: 2 | ||
Has Credit Card: Yes | ||
Is Active Member: Yes | ||
Estimated Salary: 50000""" | ||
new_prediction = classifier.predict(sc.transform(np.array([[0.0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]]))) | ||
new_prediction = (new_prediction > 0.5) | ||
|
||
# Making the Confusion Matrix | ||
from sklearn.metrics import confusion_matrix | ||
cm = confusion_matrix(y_test, y_pred) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# Data Preprocessing | ||
|
||
# Importing the libraries | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
# Importing the dataset | ||
dataset = pd.read_csv('Data.csv') | ||
X = dataset.iloc[:, :-1].values | ||
y = dataset.iloc[:, 3].values | ||
|
||
# Taking care of missing data | ||
from sklearn.preprocessing import Imputer | ||
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) | ||
imputer.fit(X[:, 1:3]) | ||
X[:, 1:3] = imputer.transform(X[:, 1:3]) | ||
|
||
# Encoding categorical data | ||
# Encoding the Independent Variable | ||
from sklearn.preprocessing import LabelEncoder, OneHotEncoder | ||
labelencoder_X = LabelEncoder() | ||
X[:, 0] = labelencoder_X.fit_transform(X[:, 0]) | ||
onehotencoder = OneHotEncoder(categorical_features = [0]) | ||
X = onehotencoder.fit_transform(X).toarray() | ||
# Encoding the Dependent Variable | ||
labelencoder_y = LabelEncoder() | ||
y = labelencoder_y.fit_transform(y) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
# Classification template | ||
|
||
# Importing the libraries | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
|
||
# Importing the dataset | ||
dataset = pd.read_csv('Social_Network_Ads.csv') | ||
X = dataset.iloc[:, [2, 3]].values | ||
y = dataset.iloc[:, 4].values | ||
|
||
# Splitting the dataset into the Training set and Test set | ||
from sklearn.cross_validation import train_test_split | ||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) | ||
|
||
# Feature Scaling | ||
from sklearn.preprocessing import StandardScaler | ||
sc = StandardScaler() | ||
X_train = sc.fit_transform(X_train) | ||
X_test = sc.transform(X_test) | ||
|
||
# Fitting classifier to the Training set | ||
# Create your classifier here | ||
|
||
# Predicting the Test set results | ||
y_pred = classifier.predict(X_test) | ||
|
||
# Making the Confusion Matrix | ||
from sklearn.metrics import confusion_matrix | ||
cm = confusion_matrix(y_test, y_pred) | ||
|
||
# Visualising the Training set results | ||
from matplotlib.colors import ListedColormap | ||
X_set, y_set = X_train, y_train | ||
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), | ||
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) | ||
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), | ||
alpha = 0.75, cmap = ListedColormap(('red', 'green'))) | ||
plt.xlim(X1.min(), X1.max()) | ||
plt.ylim(X2.min(), X2.max()) | ||
for i, j in enumerate(np.unique(y_set)): | ||
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], | ||
c = ListedColormap(('red', 'green'))(i), label = j) | ||
plt.title('Classifier (Training set)') | ||
plt.xlabel('Age') | ||
plt.ylabel('Estimated Salary') | ||
plt.legend() | ||
plt.show() | ||
|
||
# Visualising the Test set results | ||
from matplotlib.colors import ListedColormap | ||
X_set, y_set = X_test, y_test | ||
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), | ||
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) | ||
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), | ||
alpha = 0.75, cmap = ListedColormap(('red', 'green'))) | ||
plt.xlim(X1.min(), X1.max()) | ||
plt.ylim(X2.min(), X2.max()) | ||
for i, j in enumerate(np.unique(y_set)): | ||
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], | ||
c = ListedColormap(('red', 'green'))(i), label = j) | ||
plt.title('Classifier (Test set)') | ||
plt.xlabel('Age') | ||
plt.ylabel('Estimated Salary') | ||
plt.legend() | ||
plt.show() |
Oops, something went wrong.