Skip to content

Commit

Permalink
Update binary limit memo.
Browse files Browse the repository at this point in the history
  • Loading branch information
vegardjervell committed Nov 18, 2024
1 parent 63ceed9 commit 6aabdea
Show file tree
Hide file tree
Showing 6 changed files with 104 additions and 9 deletions.
Binary file modified docs/memo/binary_limit/binary_limit.pdf
Binary file not shown.
2 changes: 1 addition & 1 deletion docs/memo/binary_limit/binary_limit/diffusion.tex
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
\section{Diffusion}
This section discusses the binary limit of the diffusion coefficients in a ternary system. The purpose of the section is to give insight into how the force-flux in a binary system relate to those in a ternary, how to interpret the diffusion coefficients in a ternary system, and raise awareness regarding potential pitfalls when attempting to model a ternary system as a pseudo-binary system.

\subsection{Notation}
\subsection{Notation}\label{sec:diffusion_notation}

In the following text, $D_{ii}^{(b)}$ is used to denote the diffusion coefficient of a binary system, where component $i$ is the independent component. $D_{ii}^{(k)}$ denotes the diagonal elements of the Fick diffusion matrix in a ternary system, where component $k$ is the dependent component. $D_{ij}$ denotes the non-diagonal elements of the Fick diffusion matrix in a ternary system, where components $i$ and $j$ are the independent components.

Expand Down
1 change: 1 addition & 0 deletions docs/memo/binary_limit/binary_limit/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ \section{Introduction}
\input{diffusion}
\clearpage
\input{thermal_diffusion}
\input{soret_coefficient}

\clearpage

Expand Down
66 changes: 66 additions & 0 deletions docs/memo/binary_limit/binary_limit/soret_coefficient.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
\section{Soret coefficients}

The Soret coefficient is a measure of the steady state separation in a mixture induced by a temperature gradient. Ortiz de Zárate \cite{ortiz2019definition} defines the Soret coefficients of a multicomponent mixture ($s$ components) through
\begin{equation}
\begin{bmatrix}
x_1 (1 - x1) & x_1 x_2 & \hdots & x_1 x_{s - 1} \\
x_2 x_1 & x_2 (1 - x_2) & \hdots & x_2 x_{s - 1} \\
\vdots & & \ddots & \vdots \\
x_{s - 1} x_1 & & & x_{s - 1}(1 - x_{s - 1})
\end{bmatrix}
\begin{pmatrix}
S_{T, 1} \\
S_{T, 2} \\
\vdots \\
S_{T, s - 1}
\end{pmatrix}
=
- \frac{1}{\nabla T}
\begin{pmatrix}
\nabla x_1 \\
\nabla x_2 \\
\vdots \\
\nabla x_{s - 1}
\end{pmatrix},
\end{equation}
or more compactly,
\begin{equation}
\Mat{X} \Vec{S}_T = - \frac{\nabla \Vec{x}}{\nabla T}.
\end{equation}
Similarly to the thermal diffusion coefficients, this definition carries the advantage that
\begin{equation}
\Mat{X} \Vec{S}_T = - \frac{\nabla \Vec{x}}{\nabla T} \quad \iff \quad \Mat{W} \Vec{S}_T = - \frac{\nabla \Vec{w}}{\nabla T},
\end{equation}
such that mole- and mass fractions can be used interchangably with the same Soret coefficients.

In the state with vanishing mass fluxes ($\Vec{J} = \Vec{0}$). From the condition of vanishing mass fluxes, we find that we can compute the Soret coefficients as\footnote{See the memo on definitions of the diffusion coefficient for notes on $\Mat{D}^{(z)}$.}
\begin{equation}
\begin{split}
\Vec{J} = - c \left( \Mat{X} \Vec{D}_{T}^{(z)} \nabla T + \Mat{X} \Mat{D}^{(z)} \Mat{X}^{-1} \nabla \Vec{x} \right) &= \Vec{0} \\
- \frac{\nabla \Vec{x}}{\nabla T} &= \Mat{X} \left(\Mat{D}^{(z)}\right)^{-1} \Vec{D}_{T}^{(z)} \\
\Vec{S}_T &= \left(\Mat{D}^{(z)}\right)^{-1} \Vec{D}_{T}^{(z)}.
\end{split}
\end{equation}

For a binary system (1, 2), this definition thus yields
\begin{equation}
S_{T, 1}^{(b)} = \frac{D_{T, 1}^{(z, b)}}{D_{11}^{(z, b)}}.
\end{equation}

From the preceding relations it is possible to show that when using this definition of the Soret coefficient \cite{ortiz2019definition},
\begin{equation}
\begin{split}
\lim_{x_1 \to 0} S_{T, 2} = S_{T, 2}^{(b, 3)} \\
\lim_{x_2 \to 0} S_{T, 1} = S_{T, 1}^{(b, 3)} \\
\lim_{x_3 \to 0} S_{T, 1} - S_{T, 2} = S_{T, 1}^{(b, 2)},
\end{split}
\label{eq:soret_binary_limit}
\end{equation}
where $S_{T, i}^{b, j}$ denotes the Soret coefficient of component $i$ in a binary mixture with $j$, with species $j$ being the dependent species. Figure \ref{fig:soret_binary_limit} shows how this convergence behaviour is obeyed.

\begin{figure}
\centering
\includegraphics[width=.85\textwidth]{soret_limit.pdf}
\caption{The convergence of the ternary Soret coefficient to the corresponding binaries as indicated in Eq. \eqref{eq:soret_binary_limit}.}
\label{fig:soret_binary_limit}
\end{figure}
Binary file not shown.
44 changes: 36 additions & 8 deletions docs/memo/binary_limit/binary_limit/thermal_diffusion.tex
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ \subsection{Notation}

The notation $D_{T,i}^{(z,tj)}$ denotes the thermal diffusion coefficient of species $i$ in a ternary mixture with species $j$ taken to be the dependent species, as defined in ref. \cite{ortiz2019definition} while $D_{T,i}^{(z,bj)}$ denotes the thermal diffusion coefficient of species $i$ in a binary mixture, with species $j$ taken to be the dependent species.

Boldface roman font ($\Vec{v}$) is used to indicate vectors, and slanted underlined boldface figures ($\Mat{D}$) are used to indicate matrices. The notation $\nabla \Vec{v}$, should be understood not as a dot product, but as a vector of gradients (i.e. $\nabla \Vec{v} \equiv (\nabla v_1, \nabla v_2, ...)^\top$, in which case the equations should be understood to hold componentwise for these gradients.

\subsection{Definitions of the thermal diffusion coefficient}

The default definition of the thermal diffusion coefficient in a multicomponent mixture in the KineticGas package is
Expand Down Expand Up @@ -62,7 +64,7 @@ \subsection{Definitions of the thermal diffusion coefficient}
where $D_{T,1}^{(z,t)}$ is the thermal diffusion coefficient of species 1 in a ternary mixture, and $D_{T,1}^{(z,b3)}$ is the thermal diffusion coefficient of species 1 in a binary mixture with species 3, both as defined by Eq. \eqref{eq:zarate_def}.
that is: For a ternary system (1, 2, 3), when the mole fraction of species 2 tends to zero, the thermal diffusion coefficient of species 1 approaches the thermal diffusion coefficient of species 1 in the binary mixture (1, 3). This relation follows from an argument analogous to that in section \ref{sec:diff_indep}.

We can relate the thermal diffusion coefficients $\Vec{D}_T^{(n)}$ to the $\Vec{D}_T^{(z)}$, by rewriting Eq. \eqref{eq:DTn_def} as
For an ideal gas can relate the thermal diffusion coefficients $\Vec{D}_T^{(n)}$ to the $\Vec{D}_T^{(z)}$, by rewriting Eq. \eqref{eq:DTn_def} as
\begin{equation}
\begin{split}
\Vec{J}^{(n, n)} &= - \Mat{D}^{(n)} ( c \nabla \Vec{x} + \Vec{x} \nabla c) + \Vec{D}_T^{(n)} \nabla \ln T \\
Expand All @@ -72,11 +74,31 @@ \subsection{Definitions of the thermal diffusion coefficient}
\end{equation}
such that $\Vec{D}_T^{(z)}$ is given by the solution to
\begin{equation}
- c \Mat{X} \Vec{D}_T^{(z)} = \frac{1}{T} \left( \Vec{D}_T^{(n)} + c \Mat{D}^{(n)}\Vec{x}\right).
- c \Mat{X} \Vec{D}_T^{(z)} = \frac{1}{T} \left( \Vec{D}_T^{(n)} + c \Mat{D}^{(n)}\Vec{x}\right), \quad \text{Ideal gas}
\label{eq:DTz_DTn_relate}
\end{equation}
where we have made use of $\nabla c = c \nabla \ln T$ for an ideal gas. For a non-ideal gas the corresponding expression is
\begin{equation}
\begin{split}
\Vec{J}^{(n, n)} &= - \Mat{D}^{(n)} \left[\ppder{\vec{c}}{T}_{\vec{x}, p} \nabla T + \Mat{\Gamma}_c \nabla \vec{x}\right] + \frac{1}{T}\Vec{D}_T^{(n)} \nabla T \\
&= - \Mat{D}^{(n)} \Mat{\Gamma}_c \nabla \vec{x} + \left[\frac{1}{T}\Vec{D}_T^{(n)} - \Mat{D}^{(n)} \ppder{\vec{c}}{T}_{\vec{x}, p}\right] \nabla T,
\end{split}
\end{equation}
where
\begin{equation}
\left[\Mat{\Gamma}_c\right]_{ij} = \ppder{c_i}{x_j}_{T, p, x_{k \neq j}},
\end{equation}
and it can be useful to note that
\begin{equation}
\begin{split}
c_i &= \frac{x_i}{v} \implies \\
\ppder{c_i}{T}_{p, \vec{x}} &= - \frac{x_i}{v^2} \ppder{v}{T}_{p, \vec{x}}, \\
\ppder{c_i}{x_j}_{T, p, x_{k \neq j}} &= \frac{\delta_{ij}}{v} - \frac{c_i v_j}{v},
\end{split}
\end{equation}
and to keep in mind that these matrices and vectors are in $\mathbb{R}^{s - 1}$, because the dependent component is excluded. \textbf{Note:} At the time of writing, the expressions for non-ideal gas have not been implemented.

By the same manipulation, and noting that we can write $\nabla \vec{x} = \Mat{T}^{x \leftmapsto w} \nabla \Vec{w}$, we can rewrite equation $\eqref{eq:Dtm_def}$ as
Returning to an ideal gas, using $\nabla c = c \nabla \ln T$, and noting that we can write $\nabla \vec{x} = \Mat{T}^{x \leftmapsto w} \nabla \Vec{w}$, we can rewrite equation $\eqref{eq:Dtm_def}$ as
\begin{equation}
\begin{split}
\Vec{J}^{(n, m)} &= - \Mat{D}^{(m)} \nabla \Vec{c} + \Vec{D}_T^{(m)} \nabla \ln T \\
Expand All @@ -96,24 +118,30 @@ \subsection{Definitions of the thermal diffusion coefficient}
\begin{split}
\frac{1}{c} \Mat{X}^{-1}\left( \Vec{D}_T^{(n)} + c \Mat{D}^{(n)}\Vec{x}\right) &= \frac{1}{\rho} \Mat{W}^{-1} \diag(\Vec{M}) \left( \Vec{D}_T^{(m)} + c \Mat{D}^{(m)}\Vec{x}\right) \\
&= \frac{1}{\rho} \Mat{W}^{-1} \diag(\Vec{M}) \Mat{\Psi}^{m \leftmapsto n} \left( \Vec{D}_T^{(n)} + c \Mat{D}^{(n)}\Vec{x}\right) \\
\frac{1}{c} \Mat{X}^{-1} \Mat{\Psi}^{n \leftmapsto m} \left( \Vec{D}_T^{(m)} + c \Mat{D}^{(m)}\Vec{x}\right) &= \frac{1}{\rho} \Mat{W}^{-1} \diag(\Vec{M}) \left( \Vec{D}_T^{(m)} + c \Mat{D}^{(m)}\Vec{x}\right)
\Mat{I} &= \frac{c}{\rho} \Mat{X} \Mat{W}^{-1} \diag(\Vec{M}) \Mat{\Psi}^{m \leftmapsto n}, \quad \text{and} \\
\frac{1}{c} \Mat{X}^{-1} \Mat{\Psi}^{n \leftmapsto m} \left( \Vec{D}_T^{(m)} + c \Mat{D}^{(m)}\Vec{x}\right) &= \frac{1}{\rho} \Mat{W}^{-1} \diag(\Vec{M}) \left( \Vec{D}_T^{(m)} + c \Mat{D}^{(m)}\Vec{x}\right) \\
\frac{\rho}{c} \diag(\Vec{M}^{-1}) \Mat{W} \Mat{X}^{-1} \Mat{\Psi}^{n \leftmapsto m} &= \Mat{I}
\end{split}
\end{equation}

As a second side-effect of this procedure, we can relate the diffusion matrices, as defined by Eqs. \eqref{eq:zarate_def} to $\Mat{D}^{(m)}$ and $\Mat{D}^{(n)}$ as
As a second side-effect of this procedure, we can relate the diffusion matrices (for an ideal gas), as defined by Eqs. \eqref{eq:zarate_def} to $\Mat{D}^{(m)}$ and $\Mat{D}^{(n)}$ as
\begin{equation}
\begin{split}
\Mat{D}^{(x)} &= \Mat{D}^{(n)} \\
\Mat{D}^{(w)} &= \frac{c}{\rho} \diag(\Vec{M}) \Mat{D}^{(m)} \Mat{T}^{x \leftmapsto w}
\end{split}
\label{eq:zarate_D_impl}
\end{equation}
and remark that Ortiz de Zárate gives the relation
\begin{equation}
\Mat{W}^{-1} \Mat{D}^{(w)} \Mat{W} = \Mat{X}^{-1} \Mat{D}^{(x)} \Mat{X},
\Mat{W}^{-1} \Mat{D}^{(w)} \Mat{W} = \Mat{X}^{-1} \Mat{D}^{(x)} \Mat{X} \equiv \Mat{D}^{(z)},
\label{eq:zarate_D_equiv}
\end{equation}
which can serve as a second consistency check.

All the consistency checks mentioned above have been carried out numerically and been found to pass.
All the consistency checks mentioned above have been carried out numerically and been found to pass.

In light of Eq. \eqref{eq:zarate_D_impl}, the simplest way to implement these diffusion matrices is likely to implement $\Mat{D}^{(n)}$, and to compute $\Mat{D}^{(w)}$ and $\Mat{D}^{(z)}$ using the relations in Eq. \eqref{eq:zarate_D_equiv}. This is the approach taken in the KineticGas package.

\subsubsection{The binary case}

Expand Down Expand Up @@ -147,4 +175,4 @@ \subsection{The binary limit}
\includegraphics[width=.85\textwidth]{ternary_DT_large.pdf}
\caption{The same thermal diffusion coefficients as in Fig. \ref{fig:ternary_DT}, with deviations and for a larger composition span.}
\label{fig:ternary_DT_large}
\end{figure}
\end{figure}

0 comments on commit 6aabdea

Please sign in to comment.