-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDDPG.py
152 lines (127 loc) · 5.26 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
from itertools import count
import os, sys, random
import numpy as np
import _pickle as pickle
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
from utils.models import QNetwork, DeterministicPolicy
from utils.ReplayBuffer import ReplayBuffer
from algorithms import algorithms
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class DDPG(algorithms):
def __init__(self, args):
super().__init__(args)
state_dim = self.env.observation_space.shape[0]
action_dim = self.env.action_space.shape[0]
self.actor = DeterministicPolicy(state_dim, action_dim, 64, self.env.action_space).to(device)
self.actor_target = DeterministicPolicy(state_dim, action_dim, 64, self.env.action_space).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), self.args.lr)
self.critic = QNetwork(state_dim, action_dim, 64).to(device)
self.critic_target = QNetwork(state_dim, action_dim, 64).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), self.args.lr)
self.replay_buffer = ReplayBuffer(self.args.capacity)
self.num_critic_update_iteration = 0
self.num_actor_update_iteration = 0
self.num_training = 0
self.global_steps = 0
if self.args.last_episode > 0:
self.load(self.args.last_episode)
def update(self):
for it in range(self.args.update_iteration):
# sample from replay buffer
x, y, u, r, d = self.replay_buffer.sample(self.args.batch_size)
state = torch.FloatTensor(x).to(device)
action = torch.FloatTensor(u).to(device)
next_state = torch.FloatTensor(y).to(device)
done = torch.FloatTensor(d).to(device)
reward = torch.FloatTensor(r).to(device)
# computer the target Q value
next_action, _, _ = self.actor_target.sample(next_state)
target_Q = self.critic_target(next_state, next_action)
target_Q = reward + ((1-done) * self.args.gamma * target_Q).detach()
# get current Q estimate
current_Q = self.critic(state, action)
# compute cirtic loss and update
critic_loss = F.mse_loss(current_Q, target_Q)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# computer actor loss
actor_action, _, _ = self.actor.sample(state)
actor_loss = -self.critic(state, actor_action).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# update target model
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.args.tau * param.data + (1 - self.args.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.args.tau * param.data + (1 - self.args.tau) * target_param.data)
self.num_actor_update_iteration += 1
self.num_critic_update_iteration += 1
def train(self):
for i in range(self.args.max_episode):
state = self.env.reset()
ep_r = 0
for t in count():
action, _, _ = self.actor.sample(torch.FloatTensor([state]).to(device))
action = action.cpu().detach().numpy()[0]
next_state, reward, done, info = self.env.step(action)
self.global_steps += 1
ep_r += reward
self.replay_buffer.push((state, next_state, action, reward, np.float(done)))
state = next_state
if done or t > self.args.max_length_trajectory:
if i % self.args.print_log == 0:
print("Ep_i \t {}, the ep_r is \t{:0.2f}, the step is \t{}, global_steps is {}".format(i, ep_r, t, self.global_steps))
self.evaluate(10, False)
break
if len(self.replay_buffer.storage) >= self.args.capacity - 1:
self.update()
self.save(i+1)
def evaluate(self, number = 1, render = True):
rewards = []
for _ in range(number):
total_rews = 0
time_step = 0
done = False
state = self.env.reset()
while not done:
with torch.no_grad():
# use the mean action
_, _, action = self.actor.sample(torch.FloatTensor([state]).to(device))
action = action.cpu().detach().numpy()[0]
if render:
self.env.render()
state, reward, done, _ = self.env.step(action)
total_rews += reward
time_step += 1
if render:
print("total reward of this episode is " + str(total_rews))
rewards.append(total_rews)
rewards = np.array(rewards)
if not render:
pickle.dump((self.global_steps, rewards), self.log_file)
print("mean reward {}, max reward {}".format(rewards.mean(), rewards.max()))
def load(self, episode = None):
file_name = self.weights_file(episode)
checkpoint = torch.load(file_name)
self.actor.load_state_dict(checkpoint['actor'])
self.actor_target.load_state_dict(checkpoint['actor_target'])
self.critic.load_state_dict(checkpoint['critic'])
self.critic.load_state_dict(checkpoint['critic_target'])
print("successfully load model from " + file_name)
def save(self, episode = None):
file_name = self.weights_file(episode)
torch.save({'actor' : self.actor.state_dict(),
'critic' : self.critic.state_dict(),
'actor_target' : self.actor_target.state_dict(),
'critic_target' : self.critic_target.state_dict()}, file_name)
print("save model to " + file_name)