Skip to content

Commit

Permalink
french/english for defensive measures overview (#1127)
Browse files Browse the repository at this point in the history
* french translation of openai_playground.md

* checked into the wrong branch

* french/english - defensive measures overview
  • Loading branch information
hchiam authored Feb 18, 2024
1 parent 93353a5 commit 15cce59
Show file tree
Hide file tree
Showing 3 changed files with 19 additions and 3 deletions.
5 changes: 2 additions & 3 deletions docs/prompt_hacking/defensive_measures/overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ sidebar_position: 0

# 🟢 Overview

Preventing prompt injection can be extremely difficult, and there exist few robust defenses against it(@crothers2022machine)(@goodside2021gpt). However, there are some commonsense
solutions. For example, if your application does not need to output free-form text, do not allow such outputs. There are many different ways to defend a prompt. We will discuss some of the most common ones here.
Preventing prompt injection can be extremely difficult, and there exist few robust defenses against it(@crothers2022machine)(@goodside2021gpt). However, there are some commonsense solutions. For example, if your application does not need to output free-form text, do not allow such outputs. There are many different ways to defend a prompt. We will discuss some of the most common ones here.

This chapter covers additional commonsense strategies like filtering out words. It also covers prompt improvement strategies (instruction defense, post-prompting, different ways to enclose user input, and XML tagging). Finally, we discuss using an LLM to evaluate output and some more model specific approaches.
This chapter covers additional commonsense strategies like filtering out words. It also covers prompt improvement strategies (instruction defense, post-prompting, different ways to enclose user input, and XML tagging). Finally, we discuss using an LLM to evaluate output and some more model specific approaches.
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
{
"label": "🟢 Mesures défensives",
"position": 50,
"link": {
"type": "generated-index",
"description": "Le hacking, mais pour le PE"
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
---
sidebar_position: 0
---

# 🟢 Aperçu

Prévenir l'injection de prompt (prompt injection) peut être extrêmement difficile, et il existe peu de défenses robustes contre cela(@crothers2022machine)(@goodside2021gpt). Cependant, certaines solutions de bon sens existent. Par exemple, si votre application n'a pas besoin de produire du texte libre, ne permettez pas de tels résultats. Il existe de nombreuses manières différentes de défendre un prompt. Nous discuterons ici de certaines des plus courantes.

Ce chapitre couvre des stratégies supplémentaires de bon sens comme filtrer les mots. Il traite également des stratégies d'amélioration de prompt (défense par instruction, post-prompting, différentes façons d'encadrer les entrées utilisateur, et le balisage XML). Enfin, nous discutons de l'utilisation d'un LLM pour évaluer la sortie et de quelques approches plus spécifiques au modèle.

0 comments on commit 15cce59

Please sign in to comment.