-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into AMR_Parabolic_2D3D_Tree
- Loading branch information
Showing
10 changed files
with
663 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
63 changes: 63 additions & 0 deletions
63
examples/structured_2d_dgsem/elixir_eulerpolytropic_convergence.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the polytropic Euler equations | ||
|
||
gamma = 1.4 | ||
kappa = 0.5 # Scaling factor for the pressure. | ||
equations = PolytropicEulerEquations2D(gamma, kappa) | ||
|
||
initial_condition = initial_condition_convergence_test | ||
|
||
volume_flux = flux_winters_etal | ||
solver = DGSEM(polydeg = 3, surface_flux = flux_hll, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
coordinates_min = (0.0, 0.0) | ||
coordinates_max = (1.0, 1.0) | ||
|
||
cells_per_dimension = (4, 4) | ||
|
||
mesh = StructuredMesh(cells_per_dimension, | ||
coordinates_min, | ||
coordinates_max) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
source_terms = source_terms_convergence_test) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 0.1) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
extra_analysis_errors = (:l2_error_primitive, | ||
:linf_error_primitive)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 100, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 0.1) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the polytropic Euler equations | ||
|
||
gamma = 1.4 | ||
kappa = 0.5 # Scaling factor for the pressure. | ||
equations = PolytropicEulerEquations2D(gamma, kappa) | ||
|
||
initial_condition = initial_condition_weak_blast_wave | ||
|
||
############################################################################### | ||
# Get the DG approximation space | ||
|
||
volume_flux = flux_winters_etal | ||
solver = DGSEM(polydeg=4, surface_flux=flux_winters_etal, | ||
volume_integral=VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
############################################################################### | ||
# Get the curved quad mesh from a mapping function | ||
|
||
# Mapping as described in https://arxiv.org/abs/2012.12040, but reduced to 2D | ||
function mapping(xi_, eta_) | ||
# Transform input variables between -1 and 1 onto [0,3] | ||
xi = 1.5 * xi_ + 1.5 | ||
eta = 1.5 * eta_ + 1.5 | ||
|
||
y = eta + 3/8 * (cos(1.5 * pi * (2 * xi - 3)/3) * | ||
cos(0.5 * pi * (2 * eta - 3)/3)) | ||
|
||
x = xi + 3/8 * (cos(0.5 * pi * (2 * xi - 3)/3) * | ||
cos(2 * pi * (2 * y - 3)/3)) | ||
|
||
return SVector(x, y) | ||
end | ||
|
||
cells_per_dimension = (16, 16) | ||
|
||
# Create curved mesh with 16 x 16 elements | ||
mesh = StructuredMesh(cells_per_dimension, mapping) | ||
|
||
############################################################################### | ||
# create the semi discretization object | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 2.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval=analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval=analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval=100, | ||
save_initial_solution=true, | ||
save_final_solution=true) | ||
|
||
stepsize_callback = StepsizeCallback(cfl=1.0) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, | ||
alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition=false), | ||
dt=1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep=false, callback=callbacks); | ||
summary_callback() # print the timer summary |
83 changes: 83 additions & 0 deletions
83
examples/structured_2d_dgsem/elixir_eulerpolytropic_isothermal_wave.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the polytropic Euler equations | ||
|
||
gamma = 1.0 # With gamma = 1 the system is isothermal. | ||
kappa = 1.0 # Scaling factor for the pressure. | ||
equations = PolytropicEulerEquations2D(gamma, kappa) | ||
|
||
# Linear pressure wave in the negative x-direction. | ||
function initial_condition_wave(x, t, equations::PolytropicEulerEquations2D) | ||
rho = 1.0 | ||
v1 = 0.0 | ||
if x[1] > 0.0 | ||
rho = ((1.0 + 0.01 * sin(x[1] * 2 * pi)) / equations.kappa)^(1 / equations.gamma) | ||
v1 = ((0.01 * sin((x[1] - 1 / 2) * 2 * pi)) / equations.kappa) | ||
end | ||
v2 = 0.0 | ||
|
||
return prim2cons(SVector(rho, v1, v2), equations) | ||
end | ||
initial_condition = initial_condition_wave | ||
|
||
volume_flux = flux_winters_etal | ||
solver = DGSEM(polydeg = 2, surface_flux = flux_hll, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
coordinates_min = (-2.0, -1.0) | ||
coordinates_max = (2.0, 1.0) | ||
|
||
cells_per_dimension = (64, 32) | ||
|
||
boundary_conditions = (x_neg = boundary_condition_periodic, | ||
x_pos = boundary_condition_periodic, | ||
y_neg = boundary_condition_periodic, | ||
y_pos = boundary_condition_periodic) | ||
|
||
mesh = StructuredMesh(cells_per_dimension, | ||
coordinates_min, | ||
coordinates_max) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_conditions) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 200 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 50, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.7) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
stage_limiter! = PositivityPreservingLimiterZhangShu(thresholds = (1.0e-4, 1.0e-4), | ||
variables = (Trixi.density, pressure)) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(stage_limiter!, williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
|
||
# Print the timer summary | ||
summary_callback() |
80 changes: 80 additions & 0 deletions
80
examples/structured_2d_dgsem/elixir_eulerpolytropic_wave.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the polytropic Euler equations | ||
|
||
gamma = 2.0 # Adiabatic monatomic gas in 2d. | ||
kappa = 0.5 # Scaling factor for the pressure. | ||
equations = PolytropicEulerEquations2D(gamma, kappa) | ||
|
||
# Linear pressure wave in the negative x-direction. | ||
function initial_condition_wave(x, t, equations::PolytropicEulerEquations2D) | ||
rho = 1.0 | ||
v1 = 0.0 | ||
if x[1] > 0.0 | ||
rho = ((1.0 + 0.01 * sin(x[1] * 2 * pi)) / equations.kappa)^(1 / equations.gamma) | ||
v1 = ((0.01 * sin((x[1] - 1 / 2) * 2 * pi)) / equations.kappa) | ||
end | ||
v2 = 0.0 | ||
|
||
return prim2cons(SVector(rho, v1, v2), equations) | ||
end | ||
initial_condition = initial_condition_wave | ||
|
||
volume_flux = flux_winters_etal | ||
solver = DGSEM(polydeg = 2, surface_flux = flux_hll, | ||
volume_integral = VolumeIntegralFluxDifferencing(volume_flux)) | ||
|
||
coordinates_min = (-2.0, -1.0) | ||
coordinates_max = (2.0, 1.0) | ||
|
||
cells_per_dimension = (64, 32) | ||
|
||
boundary_conditions = (x_neg = boundary_condition_periodic, | ||
x_pos = boundary_condition_periodic, | ||
y_neg = boundary_condition_periodic, | ||
y_pos = boundary_condition_periodic) | ||
|
||
mesh = StructuredMesh(cells_per_dimension, | ||
coordinates_min, | ||
coordinates_max) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_conditions) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 1.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 200 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 50, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 1.7) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false), | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
|
||
# Print the timer summary | ||
summary_callback() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.