Skip to content

Commit

Permalink
Merge branch 'main' into sc/mhd-treemesh-3d
Browse files Browse the repository at this point in the history
  • Loading branch information
SimonCan authored Oct 24, 2023
2 parents ec0390b + e900262 commit 8387e30
Show file tree
Hide file tree
Showing 91 changed files with 4,129 additions and 482 deletions.
1 change: 1 addition & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ for human readability.
- Non-uniform `TreeMesh` available for hyperbolic-parabolic equations.
- Capability to set truly discontinuous initial conditions in 1D.
- Wetting and drying feature and examples for 1D and 2D shallow water equations
- Implementation of the polytropic Euler equations in 2D
- Subcell positivity limiting support for conservative variables in 2D for `TreeMesh`

#### Changed
Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Trixi"
uuid = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb"
authors = ["Michael Schlottke-Lakemper <[email protected]>", "Gregor Gassner <[email protected]>", "Hendrik Ranocha <[email protected]>", "Andrew R. Winters <[email protected]>", "Jesse Chan <[email protected]>"]
version = "0.5.45-pre"
version = "0.5.47-pre"

[deps]
CodeTracking = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
Expand Down
5 changes: 5 additions & 0 deletions docs/src/callbacks.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,11 @@ An example elixir using AMR can be found at [`examples/tree_2d_dgsem/elixir_adve
The [`AnalysisCallback`](@ref) can be used to analyze the numerical solution, e.g. calculate
errors or user-specified integrals, and print the results to the screen. The results can also be
saved in a file. An example can be found at [`examples/tree_2d_dgsem/elixir_euler_vortex.jl`](https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_euler_vortex.jl).
Note that the errors (e.g. `L2 error` or `Linf error`) are computed with respect to the initial condition.
The percentage of the simulation time refers to the ratio of the current time and the final time, i.e. it does
not consider the maximal number of iterations. So the simulation could finish before 100% are reached.
Note that, e.g., due to AMR or smaller time step sizes, the simulation can actually take longer than
the percentage indicates.
In [Performance metrics of the `AnalysisCallback`](@ref performance-metrics) you can find a detailed
description of the different performance metrics the `AnalysisCallback` computes.

Expand Down
32 changes: 31 additions & 1 deletion docs/src/parallelization.md
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,32 @@ the same for P4est.jl and T8code.jl. This could e.g. be `libp4est.so` that usual
in `lib/` or `local/lib/` in the installation directory of `t8code`.
In total, in your active Julia project you should have a LocalPreferences.toml file with sections
`[MPIPreferences]`, `[T8code]` and `[P4est]` as well as an entry `MPIPreferences` in your
Project.toml to use a custom MPI installation.
Project.toml to use a custom MPI installation. A `LocalPreferences.toml` file
created as described above might look something like the following:
```toml
[HDF5]
libhdf5 = "/usr/lib/x86_64-linux-gnu/hdf5/openmpi/libhdf5.so"
libhdf5_hl = "/usr/lib/x86_64-linux-gnu/hdf5/openmpi/libhdf5_hl.so"

[MPIPreferences]
__clear__ = ["preloads_env_switch"]
_format = "1.0"
abi = "OpenMPI"
binary = "system"
cclibs = []
libmpi = "/lib/x86_64-linux-gnu/libmpi.so"
mpiexec = "mpiexec"
preloads = []

[P4est]
libp4est = "/home/mschlott/hackathon/libtrixi/t8code/install/lib/libp4est.so"
libsc = "/home/mschlott/hackathon/libtrixi/t8code/install/lib/libsc.so"

[T8code]
libp4est = "/home/mschlott/hackathon/libtrixi/t8code/install/lib/libp4est.so"
libsc = "/home/mschlott/hackathon/libtrixi/t8code/install/lib/libsc.so"
libt8 = "/home/mschlott/hackathon/libtrixi/t8code/install/lib/libt8.so"
```


### [Usage](@id parallel_usage)
Expand Down Expand Up @@ -186,6 +211,11 @@ julia> set_preferences!(
"libhdf5" => "/path/to/your/libhdf5.so",
"libhdf5_hl" => "/path/to/your/libhdf5_hl.so", force = true)
```
Alternatively, with HDF5.jl v0.17.1 or higher you can use
```julia
julia> using HDF5
julia> HDF5.API.set_libraries!("/path/to/your/libhdf5.so", "/path/to/your/libhdf5_hl.so")
```
For more information see also the
[documentation of HDF5.jl](https://juliaio.github.io/HDF5.jl/stable/mpi/). In total, you should
have a file called LocalPreferences.toml in the project directory that contains a section
Expand Down
8 changes: 4 additions & 4 deletions examples/p4est_2d_dgsem/elixir_euler_double_mach_amr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,15 +27,15 @@ See Section IV c on the paper below for details.
phi = pi / 6
sin_phi, cos_phi = sincos(phi)

rho = 8
rho = 8.0
v1 = 8.25 * cos_phi
v2 = -8.25 * sin_phi
p = 116.5
else
rho = 1.4
v1 = 0
v2 = 0
p = 1
v1 = 0.0
v2 = 0.0
p = 1.0
end

prim = SVector(rho, v1, v2, p)
Expand Down
215 changes: 215 additions & 0 deletions examples/p4est_2d_dgsem/elixir_navierstokes_convergence_nonperiodic.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the ideal compressible Navier-Stokes equations

prandtl_number() = 0.72
mu() = 0.01

equations = CompressibleEulerEquations2D(1.4)
equations_parabolic = CompressibleNavierStokesDiffusion2D(equations, mu=mu(), Prandtl=prandtl_number(),
gradient_variables=GradientVariablesPrimitive())

# Create DG solver with polynomial degree = 3 and (local) Lax-Friedrichs/Rusanov flux as surface flux
solver = DGSEM(polydeg=3, surface_flux=flux_lax_friedrichs,
volume_integral=VolumeIntegralWeakForm())

coordinates_min = (-1.0, -1.0) # minimum coordinates (min(x), min(y))
coordinates_max = ( 1.0, 1.0) # maximum coordinates (max(x), max(y))

trees_per_dimension = (4, 4)
mesh = P4estMesh(trees_per_dimension,
polydeg=3, initial_refinement_level=2,
coordinates_min=coordinates_min, coordinates_max=coordinates_max,
periodicity=(false, false))

# Note: the initial condition cannot be specialized to `CompressibleNavierStokesDiffusion2D`
# since it is called by both the parabolic solver (which passes in `CompressibleNavierStokesDiffusion2D`)
# and by the initial condition (which passes in `CompressibleEulerEquations2D`).
# This convergence test setup was originally derived by Andrew Winters (@andrewwinters5000)
function initial_condition_navier_stokes_convergence_test(x, t, equations)
# Amplitude and shift
A = 0.5
c = 2.0

# convenience values for trig. functions
pi_x = pi * x[1]
pi_y = pi * x[2]
pi_t = pi * t

rho = c + A * sin(pi_x) * cos(pi_y) * cos(pi_t)
v1 = sin(pi_x) * log(x[2] + 2.0) * (1.0 - exp(-A * (x[2] - 1.0)) ) * cos(pi_t)
v2 = v1
p = rho^2

return prim2cons(SVector(rho, v1, v2, p), equations)
end

@inline function source_terms_navier_stokes_convergence_test(u, x, t, equations)
y = x[2]

# TODO: parabolic
# we currently need to hardcode these parameters until we fix the "combined equation" issue
# see also https://github.com/trixi-framework/Trixi.jl/pull/1160
inv_gamma_minus_one = inv(equations.gamma - 1)
Pr = prandtl_number()
mu_ = mu()

# Same settings as in `initial_condition`
# Amplitude and shift
A = 0.5
c = 2.0

# convenience values for trig. functions
pi_x = pi * x[1]
pi_y = pi * x[2]
pi_t = pi * t

# compute the manufactured solution and all necessary derivatives
rho = c + A * sin(pi_x) * cos(pi_y) * cos(pi_t)
rho_t = -pi * A * sin(pi_x) * cos(pi_y) * sin(pi_t)
rho_x = pi * A * cos(pi_x) * cos(pi_y) * cos(pi_t)
rho_y = -pi * A * sin(pi_x) * sin(pi_y) * cos(pi_t)
rho_xx = -pi * pi * A * sin(pi_x) * cos(pi_y) * cos(pi_t)
rho_yy = -pi * pi * A * sin(pi_x) * cos(pi_y) * cos(pi_t)

v1 = sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t)
v1_t = -pi * sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * sin(pi_t)
v1_x = pi * cos(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t)
v1_y = sin(pi_x) * (A * log(y + 2.0) * exp(-A * (y - 1.0)) + (1.0 - exp(-A * (y - 1.0))) / (y + 2.0)) * cos(pi_t)
v1_xx = -pi * pi * sin(pi_x) * log(y + 2.0) * (1.0 - exp(-A * (y - 1.0))) * cos(pi_t)
v1_xy = pi * cos(pi_x) * (A * log(y + 2.0) * exp(-A * (y - 1.0)) + (1.0 - exp(-A * (y - 1.0))) / (y + 2.0)) * cos(pi_t)
v1_yy = (sin(pi_x) * ( 2.0 * A * exp(-A * (y - 1.0)) / (y + 2.0)
- A * A * log(y + 2.0) * exp(-A * (y - 1.0))
- (1.0 - exp(-A * (y - 1.0))) / ((y + 2.0) * (y + 2.0))) * cos(pi_t))
v2 = v1
v2_t = v1_t
v2_x = v1_x
v2_y = v1_y
v2_xx = v1_xx
v2_xy = v1_xy
v2_yy = v1_yy

p = rho * rho
p_t = 2.0 * rho * rho_t
p_x = 2.0 * rho * rho_x
p_y = 2.0 * rho * rho_y
p_xx = 2.0 * rho * rho_xx + 2.0 * rho_x * rho_x
p_yy = 2.0 * rho * rho_yy + 2.0 * rho_y * rho_y

# Note this simplifies slightly because the ansatz assumes that v1 = v2
E = p * inv_gamma_minus_one + 0.5 * rho * (v1^2 + v2^2)
E_t = p_t * inv_gamma_minus_one + rho_t * v1^2 + 2.0 * rho * v1 * v1_t
E_x = p_x * inv_gamma_minus_one + rho_x * v1^2 + 2.0 * rho * v1 * v1_x
E_y = p_y * inv_gamma_minus_one + rho_y * v1^2 + 2.0 * rho * v1 * v1_y

# Some convenience constants
T_const = equations.gamma * inv_gamma_minus_one / Pr
inv_rho_cubed = 1.0 / (rho^3)

# compute the source terms
# density equation
du1 = rho_t + rho_x * v1 + rho * v1_x + rho_y * v2 + rho * v2_y

# x-momentum equation
du2 = ( rho_t * v1 + rho * v1_t + p_x + rho_x * v1^2
+ 2.0 * rho * v1 * v1_x
+ rho_y * v1 * v2
+ rho * v1_y * v2
+ rho * v1 * v2_y
# stress tensor from x-direction
- 4.0 / 3.0 * v1_xx * mu_
+ 2.0 / 3.0 * v2_xy * mu_
- v1_yy * mu_
- v2_xy * mu_ )
# y-momentum equation
du3 = ( rho_t * v2 + rho * v2_t + p_y + rho_x * v1 * v2
+ rho * v1_x * v2
+ rho * v1 * v2_x
+ rho_y * v2^2
+ 2.0 * rho * v2 * v2_y
# stress tensor from y-direction
- v1_xy * mu_
- v2_xx * mu_
- 4.0 / 3.0 * v2_yy * mu_
+ 2.0 / 3.0 * v1_xy * mu_ )
# total energy equation
du4 = ( E_t + v1_x * (E + p) + v1 * (E_x + p_x)
+ v2_y * (E + p) + v2 * (E_y + p_y)
# stress tensor and temperature gradient terms from x-direction
- 4.0 / 3.0 * v1_xx * v1 * mu_
+ 2.0 / 3.0 * v2_xy * v1 * mu_
- 4.0 / 3.0 * v1_x * v1_x * mu_
+ 2.0 / 3.0 * v2_y * v1_x * mu_
- v1_xy * v2 * mu_
- v2_xx * v2 * mu_
- v1_y * v2_x * mu_
- v2_x * v2_x * mu_
- T_const * inv_rho_cubed * ( p_xx * rho * rho
- 2.0 * p_x * rho * rho_x
+ 2.0 * p * rho_x * rho_x
- p * rho * rho_xx ) * mu_
# stress tensor and temperature gradient terms from y-direction
- v1_yy * v1 * mu_
- v2_xy * v1 * mu_
- v1_y * v1_y * mu_
- v2_x * v1_y * mu_
- 4.0 / 3.0 * v2_yy * v2 * mu_
+ 2.0 / 3.0 * v1_xy * v2 * mu_
- 4.0 / 3.0 * v2_y * v2_y * mu_
+ 2.0 / 3.0 * v1_x * v2_y * mu_
- T_const * inv_rho_cubed * ( p_yy * rho * rho
- 2.0 * p_y * rho * rho_y
+ 2.0 * p * rho_y * rho_y
- p * rho * rho_yy ) * mu_ )

return SVector(du1, du2, du3, du4)
end

initial_condition = initial_condition_navier_stokes_convergence_test

# BC types
velocity_bc_top_bottom = NoSlip((x, t, equations) -> initial_condition_navier_stokes_convergence_test(x, t, equations)[2:3])
heat_bc_top_bottom = Adiabatic((x, t, equations) -> 0.0)
boundary_condition_top_bottom = BoundaryConditionNavierStokesWall(velocity_bc_top_bottom, heat_bc_top_bottom)

boundary_condition_left_right = BoundaryConditionDirichlet(initial_condition_navier_stokes_convergence_test)

# define inviscid boundary conditions
boundary_conditions = Dict(:x_neg => boundary_condition_left_right,
:x_pos => boundary_condition_left_right,
:y_neg => boundary_condition_slip_wall,
:y_pos => boundary_condition_slip_wall)

# define viscous boundary conditions
boundary_conditions_parabolic = Dict(:x_neg => boundary_condition_left_right,
:x_pos => boundary_condition_left_right,
:y_neg => boundary_condition_top_bottom,
:y_pos => boundary_condition_top_bottom)

semi = SemidiscretizationHyperbolicParabolic(mesh, (equations, equations_parabolic), initial_condition, solver;
boundary_conditions=(boundary_conditions, boundary_conditions_parabolic),
source_terms=source_terms_navier_stokes_convergence_test)

# ###############################################################################
# # ODE solvers, callbacks etc.

# Create ODE problem with time span `tspan`
tspan = (0.0, 0.5)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()
alive_callback = AliveCallback(alive_interval=10)
analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval=analysis_interval)
callbacks = CallbackSet(summary_callback, alive_callback, analysis_callback)

###############################################################################
# run the simulation

time_int_tol = 1e-8
sol = solve(ode, RDPK3SpFSAL49(); abstol=time_int_tol, reltol=time_int_tol, dt = 1e-5,
ode_default_options()..., callback=callbacks)
summary_callback() # print the timer summary

63 changes: 63 additions & 0 deletions examples/structured_2d_dgsem/elixir_eulerpolytropic_convergence.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@

using OrdinaryDiffEq
using Trixi

###############################################################################
# semidiscretization of the polytropic Euler equations

gamma = 1.4
kappa = 0.5 # Scaling factor for the pressure.
equations = PolytropicEulerEquations2D(gamma, kappa)

initial_condition = initial_condition_convergence_test

volume_flux = flux_winters_etal
solver = DGSEM(polydeg = 3, surface_flux = flux_hll,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

coordinates_min = (0.0, 0.0)
coordinates_max = (1.0, 1.0)

cells_per_dimension = (4, 4)

mesh = StructuredMesh(cells_per_dimension,
coordinates_min,
coordinates_max)

semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 0.1)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
extra_analysis_errors = (:l2_error_primitive,
:linf_error_primitive))

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 100,
save_initial_solution = true,
save_final_solution = true,
solution_variables = cons2prim)

stepsize_callback = StepsizeCallback(cfl = 0.1)

callbacks = CallbackSet(summary_callback,
analysis_callback, alive_callback,
save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Loading

0 comments on commit 8387e30

Please sign in to comment.