-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into HLLC_MHD_1D_Cartesian
- Loading branch information
Showing
17 changed files
with
744 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
93 changes: 93 additions & 0 deletions
93
examples/tree_2d_dgsem/elixir_euler_blast_wave_sc_subcell_nonperiodic.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Euler equations | ||
|
||
equations = CompressibleEulerEquations2D(1.4) | ||
|
||
""" | ||
initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations2D) | ||
A medium blast wave taken from | ||
- Sebastian Hennemann, Gregor J. Gassner (2020) | ||
A provably entropy stable subcell shock capturing approach for high order split form DG | ||
[arXiv: 2008.12044](https://arxiv.org/abs/2008.12044) | ||
""" | ||
function initial_condition_blast_wave(x, t, equations::CompressibleEulerEquations2D) | ||
# Modified From Hennemann & Gassner JCP paper 2020 (Sec. 6.3) -> "medium blast wave" | ||
# Set up polar coordinates | ||
inicenter = SVector(0.0, 0.0) | ||
x_norm = x[1] - inicenter[1] | ||
y_norm = x[2] - inicenter[2] | ||
r = sqrt(x_norm^2 + y_norm^2) | ||
phi = atan(y_norm, x_norm) | ||
sin_phi, cos_phi = sincos(phi) | ||
|
||
# Calculate primitive variables | ||
rho = r > 0.5 ? 1.0 : 1.1691 | ||
v1 = r > 0.5 ? 0.0 : 0.1882 * cos_phi | ||
v2 = r > 0.5 ? 0.0 : 0.1882 * sin_phi | ||
p = r > 0.5 ? 1.0E-3 : 1.245 | ||
|
||
return prim2cons(SVector(rho, v1, v2, p), equations) | ||
end | ||
initial_condition = initial_condition_blast_wave | ||
|
||
boundary_condition = BoundaryConditionDirichlet(initial_condition) | ||
|
||
surface_flux = flux_lax_friedrichs | ||
volume_flux = flux_ranocha | ||
basis = LobattoLegendreBasis(3) | ||
limiter_idp = SubcellLimiterIDP(equations, basis; | ||
local_minmax_variables_cons = ["rho"]) | ||
volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; | ||
volume_flux_dg = volume_flux, | ||
volume_flux_fv = surface_flux) | ||
solver = DGSEM(basis, surface_flux, volume_integral) | ||
|
||
coordinates_min = (-2.0, -2.0) | ||
coordinates_max = (2.0, 2.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 6, | ||
n_cells_max = 10_000, | ||
periodicity = false) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver, | ||
boundary_conditions = boundary_condition) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 2.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 100 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 100, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 0.3) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
stage_callbacks = (SubcellLimiterIDPCorrection(), BoundsCheckCallback(save_errors = false)) | ||
|
||
sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks = stage_callbacks); | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
91 changes: 91 additions & 0 deletions
91
examples/tree_2d_dgsem/elixir_euler_sedov_blast_wave_sc_subcell.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
|
||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Euler equations | ||
gamma = 1.4 | ||
equations = CompressibleEulerEquations2D(gamma) | ||
|
||
""" | ||
initial_condition_sedov_blast_wave(x, t, equations::CompressibleEulerEquations2D) | ||
The Sedov blast wave setup based on Flash | ||
- https://flash.rochester.edu/site/flashcode/user_support/flash_ug_devel/node187.html#SECTION010114000000000000000 | ||
""" | ||
function initial_condition_sedov_blast_wave(x, t, equations::CompressibleEulerEquations2D) | ||
# Set up polar coordinates | ||
inicenter = SVector(0.0, 0.0) | ||
x_norm = x[1] - inicenter[1] | ||
y_norm = x[2] - inicenter[2] | ||
r = sqrt(x_norm^2 + y_norm^2) | ||
|
||
# Setup based on https://flash.rochester.edu/site/flashcode/user_support/flash_ug_devel/node187.html#SECTION010114000000000000000 | ||
r0 = 0.21875 # = 3.5 * smallest dx (for domain length=4 and max-ref=6) | ||
# r0 = 0.5 # = more reasonable setup | ||
E = 1.0 | ||
p0_inner = 3 * (equations.gamma - 1) * E / (3 * pi * r0^2) | ||
p0_outer = 1.0e-5 # = true Sedov setup | ||
# p0_outer = 1.0e-3 # = more reasonable setup | ||
|
||
# Calculate primitive variables | ||
rho = 1.0 | ||
v1 = 0.0 | ||
v2 = 0.0 | ||
p = r > r0 ? p0_outer : p0_inner | ||
|
||
return prim2cons(SVector(rho, v1, v2, p), equations) | ||
end | ||
initial_condition = initial_condition_sedov_blast_wave | ||
|
||
surface_flux = flux_lax_friedrichs | ||
volume_flux = flux_chandrashekar | ||
basis = LobattoLegendreBasis(3) | ||
limiter_idp = SubcellLimiterIDP(equations, basis; | ||
local_minmax_variables_cons = ["rho"]) | ||
volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; | ||
volume_flux_dg = volume_flux, | ||
volume_flux_fv = surface_flux) | ||
solver = DGSEM(basis, surface_flux, volume_integral) | ||
|
||
coordinates_min = (-2.0, -2.0) | ||
coordinates_max = (2.0, 2.0) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 100_000) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 3.0) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 1000 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 1000, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 0.6) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, alive_callback, | ||
stepsize_callback, | ||
save_solution) | ||
############################################################################### | ||
# run the simulation | ||
|
||
stage_callbacks = (SubcellLimiterIDPCorrection(), BoundsCheckCallback(save_errors = false)) | ||
|
||
sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks = stage_callbacks); | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
142 changes: 142 additions & 0 deletions
142
examples/tree_2d_dgsem/elixir_eulermulti_shock_bubble_shockcapturing_subcell_minmax.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
using OrdinaryDiffEq | ||
using Trixi | ||
|
||
############################################################################### | ||
# semidiscretization of the compressible Euler multicomponent equations | ||
|
||
# 1) Dry Air 2) Helium + 28% Air | ||
equations = CompressibleEulerMulticomponentEquations2D(gammas = (1.4, 1.648), | ||
gas_constants = (0.287, 1.578)) | ||
|
||
""" | ||
initial_condition_shock_bubble(x, t, equations::CompressibleEulerMulticomponentEquations2D{5, 2}) | ||
A shock-bubble testcase for multicomponent Euler equations | ||
- Ayoub Gouasmi, Karthik Duraisamy, Scott Murman | ||
Formulation of Entropy-Stable schemes for the multicomponent compressible Euler equations | ||
[arXiv: 1904.00972](https://arxiv.org/abs/1904.00972) | ||
""" | ||
function initial_condition_shock_bubble(x, t, | ||
equations::CompressibleEulerMulticomponentEquations2D{ | ||
5, | ||
2 | ||
}) | ||
# bubble test case, see Gouasmi et al. https://arxiv.org/pdf/1904.00972 | ||
# other reference: https://www.researchgate.net/profile/Pep_Mulet/publication/222675930_A_flux-split_algorithm_applied_to_conservative_models_for_multicomponent_compressible_flows/links/568da54508aeaa1481ae7af0.pdf | ||
# typical domain is rectangular, we change it to a square, as Trixi can only do squares | ||
@unpack gas_constants = equations | ||
|
||
# Positivity Preserving Parameter, can be set to zero if scheme is positivity preserving | ||
delta = 0.03 | ||
|
||
# Region I | ||
rho1_1 = delta | ||
rho2_1 = 1.225 * gas_constants[1] / gas_constants[2] - delta | ||
v1_1 = zero(delta) | ||
v2_1 = zero(delta) | ||
p_1 = 101325 | ||
|
||
# Region II | ||
rho1_2 = 1.225 - delta | ||
rho2_2 = delta | ||
v1_2 = zero(delta) | ||
v2_2 = zero(delta) | ||
p_2 = 101325 | ||
|
||
# Region III | ||
rho1_3 = 1.6861 - delta | ||
rho2_3 = delta | ||
v1_3 = -113.5243 | ||
v2_3 = zero(delta) | ||
p_3 = 159060 | ||
|
||
# Set up Region I & II: | ||
inicenter = SVector(zero(delta), zero(delta)) | ||
x_norm = x[1] - inicenter[1] | ||
y_norm = x[2] - inicenter[2] | ||
r = sqrt(x_norm^2 + y_norm^2) | ||
|
||
if (x[1] > 0.50) | ||
# Set up Region III | ||
rho1 = rho1_3 | ||
rho2 = rho2_3 | ||
v1 = v1_3 | ||
v2 = v2_3 | ||
p = p_3 | ||
elseif (r < 0.25) | ||
# Set up Region I | ||
rho1 = rho1_1 | ||
rho2 = rho2_1 | ||
v1 = v1_1 | ||
v2 = v2_1 | ||
p = p_1 | ||
else | ||
# Set up Region II | ||
rho1 = rho1_2 | ||
rho2 = rho2_2 | ||
v1 = v1_2 | ||
v2 = v2_2 | ||
p = p_2 | ||
end | ||
|
||
return prim2cons(SVector(v1, v2, p, rho1, rho2), equations) | ||
end | ||
initial_condition = initial_condition_shock_bubble | ||
|
||
surface_flux = flux_lax_friedrichs | ||
volume_flux = flux_ranocha | ||
basis = LobattoLegendreBasis(3) | ||
|
||
limiter_idp = SubcellLimiterIDP(equations, basis; | ||
local_minmax_variables_cons = ["rho" * string(i) | ||
for i in eachcomponent(equations)]) | ||
volume_integral = VolumeIntegralSubcellLimiting(limiter_idp; | ||
volume_flux_dg = volume_flux, | ||
volume_flux_fv = surface_flux) | ||
|
||
solver = DGSEM(basis, surface_flux, volume_integral) | ||
|
||
coordinates_min = (-2.25, -2.225) | ||
coordinates_max = (2.20, 2.225) | ||
mesh = TreeMesh(coordinates_min, coordinates_max, | ||
initial_refinement_level = 3, | ||
n_cells_max = 1_000_000) | ||
|
||
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver) | ||
|
||
############################################################################### | ||
# ODE solvers, callbacks etc. | ||
|
||
tspan = (0.0, 0.01) | ||
ode = semidiscretize(semi, tspan) | ||
|
||
summary_callback = SummaryCallback() | ||
|
||
analysis_interval = 300 | ||
analysis_callback = AnalysisCallback(semi, interval = analysis_interval, | ||
extra_analysis_integrals = (Trixi.density,)) | ||
|
||
alive_callback = AliveCallback(analysis_interval = analysis_interval) | ||
|
||
save_solution = SaveSolutionCallback(interval = 600, | ||
save_initial_solution = true, | ||
save_final_solution = true, | ||
solution_variables = cons2prim) | ||
|
||
stepsize_callback = StepsizeCallback(cfl = 0.5) | ||
|
||
callbacks = CallbackSet(summary_callback, | ||
analysis_callback, | ||
alive_callback, | ||
save_solution, | ||
stepsize_callback) | ||
|
||
############################################################################### | ||
# run the simulation | ||
|
||
stage_callbacks = (SubcellLimiterIDPCorrection(), BoundsCheckCallback(save_errors = false)) | ||
|
||
sol = Trixi.solve(ode, Trixi.SimpleSSPRK33(stage_callbacks = stage_callbacks); | ||
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback | ||
save_everystep = false, callback = callbacks); | ||
summary_callback() # print the timer summary |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.