Skip to content

Commit

Permalink
apply changes from previous PR
Browse files Browse the repository at this point in the history
  • Loading branch information
patrickersing committed Jan 12, 2024
1 parent 29b81b8 commit 99368cc
Show file tree
Hide file tree
Showing 16 changed files with 1,775 additions and 12 deletions.
8 changes: 8 additions & 0 deletions .JuliaFormatter.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# Use SciML style: https://github.com/SciML/SciMLStyle
style = "sciml"

# Python style alignment. See https://github.com/domluna/JuliaFormatter.jl/pull/732.
yas_style_nesting = true

# Align struct fields for better readability of large struct definitions
align_struct_field = true
8 changes: 7 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,14 @@ authors = ["Andrew R. Winters <[email protected]>", "Michael Schlottke-
version = "0.1.0-pre"

[deps]
MuladdMacro = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221"
Static = "aedffcd0-7271-4cad-89d0-dc628f76c6d3"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
Trixi = "a7f1ee26-1774-49b1-8366-f1abc58fbfcb"

[compat]
MuladdMacro = "0.2.2"
Static = "0.3, 0.4, 0.5, 0.6, 0.7, 0.8"
StaticArrays = "1"
Trixi = "0.5.17, 0.6"
julia = "1.8"
julia = "1.8"
93 changes: 93 additions & 0 deletions examples/tree_1d_dgsem/elixir_shallowwater_ec.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the shallow water equations with a discontinuous
# bottom topography function for a fully wet configuration

equations = ShallowWaterEquationsWetDry1D(gravity_constant = 9.81)

# Initial condition with a truly discontinuous water height, velocity, and bottom
# topography function as an academic testcase for entropy conservation.
# The errors from the analysis callback are not important but `∑∂S/∂U ⋅ Uₜ` should
# be around machine roundoff.
# Works as intended for TreeMesh1D with `initial_refinement_level=4`. If the mesh
# refinement level is changed the initial condition below may need changed as well to
# ensure that the discontinuities lie on an element interface.
function initial_condition_ec_discontinuous_bottom(x, t,
equations::ShallowWaterEquationsWetDry1D)
# Set the background values
H = 4.25
v = 0.0
b = sin(x[1]) # arbitrary continuous function

# Setup the discontinuous water height and velocity
if x[1] >= 0.125 && x[1] <= 0.25
H = 5.0
v = 0.1882
end

# Setup a discontinuous bottom topography
if x[1] >= -0.25 && x[1] <= -0.125
b = 2.0 + 0.5 * sin(2.0 * pi * x[1])
end

return prim2cons(SVector(H, v, b), equations)
end

initial_condition = initial_condition_ec_discontinuous_bottom

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_wintermeyer_etal)
solver = DGSEM(polydeg = 4,
surface_flux = (flux_fjordholm_etal, flux_nonconservative_fjordholm_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = -1.0
coordinates_max = 1.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 4,
n_cells_max = 10_000)

# Create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solver

tspan = (0.0, 2.0)
ode = semidiscretize(semi, tspan)

###############################################################################
# Callbacks

summary_callback = SummaryCallback()

analysis_interval = 100
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 100,
save_initial_solution = true,
save_final_solution = true)

stepsize_callback = StepsizeCallback(cfl = 3.0)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
60 changes: 60 additions & 0 deletions examples/tree_1d_dgsem/elixir_shallowwater_source_terms.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the shallow water equations for a fully wet configuration

equations = ShallowWaterEquationsWetDry1D(gravity_constant = 9.81)

initial_condition = initial_condition_convergence_test

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_wintermeyer_etal)
solver = DGSEM(polydeg = 3,
surface_flux = (flux_lax_friedrichs, flux_nonconservative_fjordholm_etal),
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = 0.0
coordinates_max = sqrt(2.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 3,
n_cells_max = 10_000,
periodicity = true)

# create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 200,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(); abstol = 1.0e-8, reltol = 1.0e-8,
ode_default_options()..., callback = callbacks);
summary_callback() # print the timer summary
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# Semidiscretization of the shallow water equations

equations = ShallowWaterEquationsWetDry1D(gravity_constant = 9.81)

initial_condition = initial_condition_convergence_test

boundary_condition = BoundaryConditionDirichlet(initial_condition)

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_wintermeyer_etal)
surface_flux = (flux_lax_friedrichs, flux_nonconservative_fjordholm_etal)
solver = DGSEM(polydeg = 3, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = 0.0
coordinates_max = sqrt(2.0)
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 3,
n_cells_max = 10_000,
periodicity = false)

# create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver,
boundary_conditions = boundary_condition,
source_terms = source_terms_convergence_test)

###############################################################################
# ODE solvers, callbacks etc.

tspan = (0.0, 1.0)
ode = semidiscretize(semi, tspan)

summary_callback = SummaryCallback()

analysis_interval = 500
analysis_callback = AnalysisCallback(semi, interval = analysis_interval)

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 200,
save_initial_solution = true,
save_final_solution = true)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution)

###############################################################################
# run the simulation

# use a Runge-Kutta method with automatic (error based) time step size control
sol = solve(ode, RDPK3SpFSAL49(); abstol = 1.0e-8, reltol = 1.0e-8,
ode_default_options()..., callback = callbacks);
summary_callback() # print the timer summary
88 changes: 88 additions & 0 deletions examples/tree_1d_dgsem/elixir_shallowwater_well_balanced.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@

using OrdinaryDiffEq
using Trixi
using TrixiShallowWater

###############################################################################
# semidiscretization of the shallow water equations with a discontinuous
# bottom topography function for a fully wet configuration

equations = ShallowWaterEquationsWetDry1D(gravity_constant = 9.81, H0 = 3.25)

# Setup a truly discontinuous bottom topography function for this academic
# testcase of well-balancedness. The errors from the analysis callback are
# not important but the error for this lake-at-rest test case
# `∑|H0-(h+b)|` should be around machine roundoff.
# Works as intended for TreeMesh1D with `initial_refinement_level=3`. If the mesh
# refinement level is changed the initial condition below may need changed as well to
# ensure that the discontinuities lie on an element interface.
function initial_condition_discontinuous_well_balancedness(x, t,
equations::ShallowWaterEquationsWetDry1D)
# Set the background values
H = equations.H0
v = 0.0
b = 0.0

# Setup a discontinuous bottom topography
if x[1] >= 0.5 && x[1] <= 0.75
b = 2.0 + 0.5 * sin(2.0 * pi * x[1])
end

return prim2cons(SVector(H, v, b), equations)
end

initial_condition = initial_condition_discontinuous_well_balancedness

###############################################################################
# Get the DG approximation space

volume_flux = (flux_wintermeyer_etal, flux_nonconservative_wintermeyer_etal)
surface_flux = (flux_fjordholm_etal, flux_nonconservative_fjordholm_etal)
solver = DGSEM(polydeg = 4, surface_flux = surface_flux,
volume_integral = VolumeIntegralFluxDifferencing(volume_flux))

###############################################################################
# Get the TreeMesh and setup a periodic mesh

coordinates_min = -1.0
coordinates_max = 1.0
mesh = TreeMesh(coordinates_min, coordinates_max,
initial_refinement_level = 3,
n_cells_max = 10_000)

# Create the semi discretization object
semi = SemidiscretizationHyperbolic(mesh, equations, initial_condition, solver)

###############################################################################
# ODE solver

tspan = (0.0, 100.0)
ode = semidiscretize(semi, tspan)

###############################################################################
# Callbacks

summary_callback = SummaryCallback()

analysis_interval = 1000
analysis_callback = AnalysisCallback(semi, interval = analysis_interval,
extra_analysis_integrals = (lake_at_rest_error,))

alive_callback = AliveCallback(analysis_interval = analysis_interval)

save_solution = SaveSolutionCallback(interval = 1000,
save_initial_solution = true,
save_final_solution = true)

stepsize_callback = StepsizeCallback(cfl = 3.0)

callbacks = CallbackSet(summary_callback, analysis_callback, alive_callback, save_solution,
stepsize_callback)

###############################################################################
# run the simulation

sol = solve(ode, CarpenterKennedy2N54(williamson_condition = false),
dt = 1.0, # solve needs some value here but it will be overwritten by the stepsize_callback
save_everystep = false, callback = callbacks);
summary_callback() # print the timer summary
Loading

0 comments on commit 99368cc

Please sign in to comment.