a muilti-stage- 3d detector based on PointRCNN (https://github.com/sshaoshuai/PointRCNN) and Cascade-rcnn https://arxiv.org/abs/1712.00726
sh build_and_install.sh
Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:
PointRCNN
├── data
│ ├── KITTI
│ │ ├── ImageSets
│ │ ├── object
│ │ │ ├──training
│ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│ │ │ ├──testing
│ │ │ ├──calib & velodyne & image_2
├── lib
├── pointnet2_lib
├── tools
Generate the augmented offline scenes by running the following command:
python generate_aug_scene.py --class_name Car --split train --aug_times 4
(a) Train RCNN network with fixed RPN network to use online GT augmentation: Use --rpn_ckpt
to specify the path of a well-trained RPN model and run the command as follows:
python train_rcnn.py --cfg_file cfgs/default.yaml --batch_size 4 --train_mode rcnn --epochs 70 --ckpt_save_interval 2 --rpn_ckpt ./PointRCNN.pth --ouput_dir ./cascade_output
To evaluate a single checkpoint, run the following command with --ckpt
to specify the checkpoint to be evaluated:
python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt ./cascade_output/ckpt/checkpoint_epoch_?.pth --batch_size 4 --eval_mode rcnn