Skip to content

Commit

Permalink
Update requirements.txt and format code
Browse files Browse the repository at this point in the history
  • Loading branch information
actions-user committed Oct 10, 2024
1 parent eee2c26 commit db77a61
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions mimic/model_infer/infer_VAR_bayes.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ def run_inference_large(self, samples=4000, tune=2000, cores=4) -> None:
c2 = pm.InverseGamma("c2", 2, 8)
tau = pm.HalfCauchy("tau", beta=tau0)
lam = pm.HalfCauchy("lam", beta=1, shape=(ndim, ndim))
A = pm.Normal('A', mu=A_prior_mu, sigma=tau * lam *
A = pm.Normal('A', mu=A_prior_mu, sigma=tau * lam * \
at.sqrt(c2 / (c2 + tau**2 * lam**2)), shape=(ndim, ndim))

# If noise covariance is provided, use it as a prior
Expand Down Expand Up @@ -344,14 +344,14 @@ def run_inference_large_xs(self, samples=4000, tune=2000, cores=4) -> None:
c2_A = pm.InverseGamma("c2_A", 2, 1)
tau_A = pm.HalfCauchy("tau_A", beta=tau0_A)
lam_A = pm.HalfCauchy("lam_A", beta=1, shape=(nX, nX))
Ah = pm.Normal('Ah', mu=A_prior_mu, sigma=tau_A * lam_A *
Ah = pm.Normal('Ah', mu=A_prior_mu, sigma=tau_A * lam_A * \
at.sqrt(c2_A / (c2_A + tau_A**2 * lam_A**2)), shape=(nX, nX))

tau0_B = (DB0 / (DB - DB0)) * 0.1 / np.sqrt(N)
c2_B = pm.InverseGamma("c2_B", 2, 1)
tau_B = pm.HalfCauchy("tau_B", beta=tau0_B)
lam_B = pm.HalfCauchy("lam_B", beta=1, shape=(nS, nX))
Bh = pm.Normal('Bh', mu=0, sigma=tau_B * lam_B *
Bh = pm.Normal('Bh', mu=0, sigma=tau_B * lam_B * \
at.sqrt(c2_B / (c2_B + tau_B**2 * lam_B**2)), shape=(nS, nX))

if noise_cov_prior is not None:
Expand Down

0 comments on commit db77a61

Please sign in to comment.