Jupyter Notebooks for 4CE data visualizations.
Set up git hook to clear notebook outputs before commit:
cp ./pre-commit.sh ./.git/hooks/pre-commit
chmod +x ./.git/hooks/pre-commit
Set up environments using Conda and enable Jupyter widgets:
conda env create -f environment.yml
conda env create -f environment.r.yml
jupyter nbextension enable --py --sys-prefix lineup_widget
jupyter nbextension enable --py --sys-prefix upsetjs_jupyter_widget
To use real datasets, create a data folder:
mkdir data
Add data files inside this folder, and make sure to properly set the data directory in notebooks/constants.py
:
DATA_DIR = join("..", "data")
Enter the notebook directory:
cd notebooks
Start Jupyter with the Python (or R) kernel:
conda activate 4ce # or 4ce-r
jupyter notebook
Plots created with Altair can be converted to the Vega-Lite JSON format, which enables these plots to be used on the website.
To streamline this process, any plots that should be used on the website should be passed to the for_website()
function (defined here).
In a notebook, this would look like:
from web import for_website
plot = alt.Chart(df).mark_point().encode(x='day',y='num_patients')
# Specify the notebook name, and give each plot a unique name.
for_website(plot, "Labs", "Lab Values by Site")
plot
By default, the for_website
function does nothing.
Only when the environment variable C19_SAVE_FOR_WEB_DIR
is set on your computer, will the output JSON files be generated.
This environment variable can be set like this:
export C19_SAVE_FOR_WEB_DIR=~/research/dbmi/covid/plots_for_website
To add or remove a conda package, update the corresponding environment file. Then run
conda env update -f environment.yml # or environment.r.yml