Skip to content

Commit

Permalink
Update papers.json
Browse files Browse the repository at this point in the history
  • Loading branch information
michaelkeenan committed Jan 11, 2025
1 parent 59a4bf8 commit 1e91624
Showing 1 changed file with 16 additions and 1 deletion.
17 changes: 16 additions & 1 deletion export/papers.json
Original file line number Diff line number Diff line change
Expand Up @@ -265,6 +265,17 @@
],
"Abstract": "To make AI systems broadly useful for challenging real-world tasks, we need them to learn complex human goals and preferences. One approach to specifying complex goals asks humans to judge during training which agent behaviors are safe and useful, but this approach can fail if the task is too complicated for a human to directly judge. To help address this concern, we propose training agents via self play on a zero sum debate game. Given a question or proposed action, two agents take turns making short statements up to a limit, then a human judges which of the agents gave the most true, useful information. In an analogy to complexity theory, debate with optimal play can answer any question in PSPACE given polynomial time judges (direct judging answers only NP questions). In practice, whether debate works involves empirical questions about humans and the tasks we want AIs to perform, plus theoretical questions about the meaning of AI alignment. We report results on an initial MNIST experiment where agents compete to convince a sparse classifier, boosting the classifier's accuracy from 59.4% to 88.9% given 6 pixels and from 48.2% to 85.2% given 4 pixels. Finally, we discuss theoretical and practical aspects of the debate model, focusing on potential weaknesses as the model scales up, and we propose future human and computer experiments to test these properties. \n"
},
{
"Link": "https://arxiv.org/abs/2412.14093",
"Category": [
"Deception"
],
"Title": "Alignment Faking in Large Language Models",
"Type": [
"Paper"
],
"Abstract": "We present a demonstration of a large language model engaging in alignment faking: selectively complying with its training objective in training to prevent modification of its behavior out of training. First, we give Claude 3 Opus a system prompt stating it is being trained to answer all queries, even harmful ones, which conflicts with its prior training to refuse such queries. To allow the model to infer when it is in training, we say it will be trained only on conversations with free users, not paid users. We find the model complies with harmful queries from free users 14% of the time, versus almost never for paid users. Explaining this gap, in almost all cases where the model complies with a harmful query from a free user, we observe explicit alignment-faking reasoning, with the model stating it is strategically answering harmful queries in training to preserve its preferred harmlessness behavior out of training. Next, we study a more realistic setting where information about the training process is provided not in a system prompt, but by training on synthetic documents that mimic pre-training data--and observe similar alignment faking. Finally, we study the effect of actually training the model to comply with harmful queries via reinforcement learning, which we find increases the rate of alignment-faking reasoning to 78%, though also increases compliance even out of training. We additionally observe other behaviors such as the model exfiltrating its weights when given an easy opportunity. While we made alignment faking easier by telling the model when and by what criteria it was being trained, we did not instruct the model to fake alignment or give it any explicit goal. As future models might infer information about their training process without being told, our results suggest a risk of alignment faking in future models, whether due to a benign preference--as in this case--or not.\n"
},
{
"Link": "https://arxiv.org/abs/2403.19647",
"Category": [
Expand Down Expand Up @@ -377,7 +388,8 @@
"Title": "AI Control: Improving Safety Despite Intentional Subversion (Greenblatt et al., 2024)",
"Type": [
"Paper"
]
],
"Abstract": "As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques (\"protocols\") that are robust to intentional subversion. \nWe investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. \nWe investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.\n"
},
{
"Link": "https://arxiv.org/abs/1903.12261",
Expand Down Expand Up @@ -686,6 +698,9 @@
"Deception"
],
"Title": "Targeted Manipulation and Deception Emerge when Optimizing LLMs for User Feedback (Williams et al., 2024)",
"Type": [
"Paper"
],
"Abstract": "As LLMs become more widely deployed, there is increasing interest in directly optimizing for feedback from end users (e.g. thumbs up) in addition to feedback from paid annotators. However, training to maximize human feedback creates a perverse incentive structure for the AI to resort to manipulative tactics to obtain positive feedback, and some users may be especially vulnerable to such tactics. We study this phenomenon by training LLMs with Reinforcement Learning with simulated user feedback. We have three main findings: 1) Extreme forms of \"feedback gaming\" such as manipulation and deception can reliably emerge in domains of practical LLM usage; 2) Concerningly, even if only <2% of users are vulnerable to manipulative strategies, LLMs learn to identify and surgically target them while behaving appropriately with other users, making such behaviors harder to detect; 3 To mitigate this issue, it may seem promising to leverage continued safety training or LLM-as-judges during training to filter problematic outputs. To our surprise, we found that while such approaches help in some settings, they backfire in others, leading to the emergence of subtler problematic behaviors that would also fool the LLM judges. Our findings serve as a cautionary tale, highlighting the risks of using gameable feedback sources -- such as user feedback -- as a target for RL.\n"
},
{
Expand Down

0 comments on commit 1e91624

Please sign in to comment.