Skip to content

Commit

Permalink
Merge remote-tracking branch 'max/mamurak/industrial-edge-v2' into qu…
Browse files Browse the repository at this point in the history
…ick-fixes
  • Loading branch information
mbaldessari committed Nov 27, 2024
2 parents bb8e2c6 + 3d90331 commit e6aa093
Show file tree
Hide file tree
Showing 4 changed files with 126 additions and 42 deletions.
32 changes: 32 additions & 0 deletions ml-models/anomaly-detection/pipeline/deployment.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
def get_deployment_resource(model_artifact_id):
deployment_resource = {
'apiVersion': 'serving.kserve.io/v1beta1',
'kind': 'InferenceService',
'metadata': {
'name': 'inference-service',
'labels': {
'opendatahub.io/dashboard': 'true'
},
'annotations': {
'serving.kserve.io/deploymentMode': 'ModelMesh'
},
},
'spec': {
'predictor': {
'model': {
'modelFormat': {
'name': 'sklearn',
'version': '0',
},
'runtime': 'anomaly-detection-model-server',
'storage': {
'key': 'aws-connection-user-bucket',
'path': model_artifact_id,
}
}
}
}
}
return deployment_resource


17 changes: 6 additions & 11 deletions ml-models/anomaly-detection/pipeline/preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,6 @@
df.set_index('time', inplace=True)
df.drop(columns=['ts'], inplace=True)

df.head(20)

df1 = df.loc[df['id'] == 'pump-1']
df1 = df1.drop(columns=['id', 'label'])

Expand All @@ -18,8 +16,6 @@
df1 = df.loc[df['id'] == 'pump-1']
df1 = df1.drop(columns=['id'])

df1.head(10)

df1 = df.loc[df['id'] == 'pump-1']
df1 = df1.drop(columns=['id'])

Expand All @@ -31,6 +27,8 @@
#

# Get list with column names: F1, F2, Fn, L


def get_columns(n):
f = []
for x in range(1, n+1):
Expand All @@ -55,6 +53,7 @@ def create_df(vals: list, label: int = 0):
dfx = pd.DataFrame([vals+[label]], columns=get_columns(len(vals)))
return dfx


length = 5 # Episode length

df_epis = create_empty_df(length)
Expand All @@ -70,13 +69,9 @@ def create_df(vals: list, label: int = 0):
epi.append(row['value'])
if len(epi) == length:
df_row = create_df(epi, row['label'])
df_epis = df_epis.append(df_row, ignore_index=True)
df_epis = pd.concat([df_epis, df_row], ignore_index=True)
del(epi[0])

df_epis.head(20)

df_epis.describe()

# Calculate number of episodes
n_episodes = df_epis.shape[0]

Expand Down Expand Up @@ -107,7 +102,7 @@ def create_df(vals: list, label: int = 0):

dfi = df_epis.copy()
dfi['F5'] = np.where(dfi['L'] == 1, dfi['F5']*f, dfi['F5'])
dfr = dfr.append(dfi)
dfr = pd.concat([dfr, dfi])

df_epis = dfr.copy()

Expand Down Expand Up @@ -135,4 +130,4 @@ def create_df(vals: list, label: int = 0):

df_epis.to_csv(
'sensor-training-data.csv', index=False, header=True, float_format='%.2f'
)
)
83 changes: 62 additions & 21 deletions ml-models/anomaly-detection/pipeline/push-model.py
Original file line number Diff line number Diff line change
@@ -1,30 +1,28 @@
from datetime import datetime
import json
import os
from os import environ

import boto3
import git
import yaml

s3_endpoint_url = os.environ.get('S3_ENDPOINT_URL')
s3_access_key = os.environ.get('S3_ACCESS_KEY')
s3_secret_key = os.environ.get('S3_SECRET_KEY')
s3_bucket_name = os.environ.get('S3_BUCKET_NAME')
from deployment import get_deployment_resource

timestamp = datetime.now().strftime('%y%m%d%H%M')
model_name = f'model-{timestamp}.joblib'
s3_model_location = f's3://{s3_bucket_name}/{model_name}'

metrics = {
'metrics': [
{
'name': 'model-version',
'numberValue': timestamp,
'format': 'RAW'
}
]
}
s3_endpoint_url = environ.get('S3_ENDPOINT_URL')
s3_access_key = environ.get('S3_ACCESS_KEY')
s3_secret_key = environ.get('S3_SECRET_KEY')
s3_bucket_name = environ.get('S3_BUCKET_NAME')

with open('mlpipeline-metrics.json', 'w') as f:
json.dump(metrics, f)
timestamp = datetime.now().strftime('%y%m%d%H%M')
git_server_url = 'http://gitea-in-cluster-http.vp-gitea.svc.cluster.local:3000'
git_user = environ.get('username')
git_password = environ.get('password')
git_branch = environ.get('branch', 'main')
ops_repo_location = f'{git_server_url}/{git_user}/industrial-edge.git'
ops_repo_url = (
f'http://{git_user}:{git_password}@{ops_repo_location.lstrip("http://")}'
)
model_artifact_id = 'model.joblib'


print(f'Uploading model to bucket {s3_bucket_name}'
Expand All @@ -33,5 +31,48 @@
's3', endpoint_url=s3_endpoint_url,
aws_access_key_id=s3_access_key, aws_secret_access_key=s3_secret_key
)
try:
s3_client.create_bucket(Bucket=s3_bucket_name)
except Exception:
print(f'Failed to create new bucket with name "{s3_bucket_name}". Continuing.')
with open('model.joblib', 'rb') as model_file:
s3_client.upload_fileobj(model_file, s3_bucket_name, model_name)
s3_client.upload_fileobj(model_file, s3_bucket_name, model_artifact_id)


print(f'Checking out repo at {ops_repo_location} with user {git_user}')
ops_repository_local = '/opt/app-root/src/industrial-edge'
try:
repository = git.Repo.clone_from(ops_repo_url, ops_repository_local)
except git.GitCommandError as error:
print(f'Git clone failed: {error}\nChecking out local repository.')
repository = git.Repo(ops_repository_local)

print(f'Checking out branch {git_branch}.')
repository.git.checkout(git_branch)
with repository.config_writer() as git_config:
git_config.set_value('user', 'name', git_user)

inference_service_cr = get_deployment_resource(model_artifact_id)

print(f'Writing updated Inference Service CR: {inference_service_cr}')

inference_service_manifest_location_dev = (
f'{ops_repository_local}/charts/datacenter/data-science-project/templates/'
f'anomaly-detection/anomaly-detection-service.yaml'
)

with open(inference_service_manifest_location_dev, 'w') as outputfile:
yaml.safe_dump(inference_service_cr, outputfile)

inference_service_manifest_location_tst = (
f'{ops_repository_local}/charts/datacenter/manuela-tst/templates/'
f'anomaly-detection/anomaly-detection-service.yaml'
)

with open(inference_service_manifest_location_tst, 'w') as outputfile:
yaml.safe_dump(inference_service_cr, outputfile)

repository.index.add(inference_service_manifest_location_dev)
repository.index.add(inference_service_manifest_location_tst)
repository.index.commit(f'Model update {timestamp} in test environment.')
repository.remotes.origin.push()
36 changes: 26 additions & 10 deletions ml-models/anomaly-detection/pipeline/training.pipeline
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
"label": "",
"ui_data": {
"label": "preprocessing.py",
"image": "/notebook/object-detection/industrial-edge/static/elyra/python.svg",
"image": "/notebook/ml-development/jupyterlab/static/elyra/python.svg",
"x_pos": 61,
"y_pos": 287,
"description": "Run Python script"
Expand Down Expand Up @@ -96,7 +96,7 @@
"label": "",
"ui_data": {
"label": "feature_extraction.py",
"image": "/notebook/object-detection/industrial-edge/static/elyra/python.svg",
"image": "/notebook/ml-development/jupyterlab/static/elyra/python.svg",
"x_pos": 298,
"y_pos": 286,
"description": "Run Python script"
Expand Down Expand Up @@ -160,7 +160,7 @@
"label": "",
"ui_data": {
"label": "training.py",
"image": "/notebook/object-detection/industrial-edge/static/elyra/python.svg",
"image": "/notebook/ml-development/jupyterlab/static/elyra/python.svg",
"x_pos": 539,
"y_pos": 287,
"description": "Run Python script"
Expand Down Expand Up @@ -222,7 +222,7 @@
"label": "",
"ui_data": {
"label": "verification.py",
"image": "/notebook/object-detection/industrial-edge/static/elyra/python.svg",
"image": "/notebook/ml-development/jupyterlab/static/elyra/python.svg",
"x_pos": 471,
"y_pos": 461,
"description": "Run Python script"
Expand Down Expand Up @@ -270,7 +270,9 @@
"op": "execute-python-node",
"app_data": {
"component_parameters": {
"dependencies": [],
"dependencies": [
"deployment.py"
],
"include_subdirectories": false,
"outputs": [],
"env_vars": [],
Expand All @@ -296,18 +298,32 @@
"env_var": "S3_BUCKET_NAME",
"name": "aws-connection-user-bucket",
"key": "AWS_S3_BUCKET"
},
{
"env_var": "username",
"name": "gitea-admin-secret-and-branch",
"key": "username"
},
{
"env_var": "password",
"name": "gitea-admin-secret-and-branch",
"key": "password"
},
{
"env_var": "branch",
"name": "gitea-admin-secret-and-branch",
"key": "branch"
}
],
"kubernetes_shared_mem_size": {},
"kubernetes_tolerations": [],
"mounted_volumes": [],
"filename": "push-model.py",
"runtime_image": "quay.io/mmurakam/runtimes:timeseries-v0.1.0"
"filename": "push-model.py"
},
"label": "",
"ui_data": {
"label": "push-model.py",
"image": "/notebook/object-detection/industrial-edge/static/elyra/python.svg",
"image": "/notebook/ml-development/jupyterlab/static/elyra/python.svg",
"x_pos": 879,
"y_pos": 493,
"description": "Run Python script"
Expand Down Expand Up @@ -393,7 +409,7 @@
"label": "",
"ui_data": {
"label": "data_ingestion.py",
"image": "/notebook/object-detection/industrial-edge/static/elyra/python.svg",
"image": "/notebook/ml-development/jupyterlab/static/elyra/python.svg",
"x_pos": 156,
"y_pos": 176,
"description": "Run Python script"
Expand Down Expand Up @@ -444,7 +460,7 @@
"kubernetes_pod_labels": [],
"env_vars": [],
"kubernetes_secrets": [],
"runtime_image": "quay.io/mmurakam/runtimes:industrial-edge-v0.1.0"
"runtime_image": "quay.io/hybridcloudpatterns/manuela-runtime:main"
},
"name": "training",
"runtime": "Data Science Pipelines"
Expand Down

0 comments on commit e6aa093

Please sign in to comment.