-
Notifications
You must be signed in to change notification settings - Fork 694
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Async IO threads #758
Async IO threads #758
Conversation
Signed-off-by: Uri Yagelnik <[email protected]>
Codecov ReportAttention: Patch coverage is
Additional details and impacted files@@ Coverage Diff @@
## unstable #758 +/- ##
============================================
+ Coverage 70.13% 70.20% +0.06%
============================================
Files 111 112 +1
Lines 60300 60534 +234
============================================
+ Hits 42292 42496 +204
- Misses 18008 18038 +30
|
running everything with io threads: https://github.com/valkey-io/valkey/actions/runs/9847586729/job/27187890813 |
Reviewed internally and approved. Test results look consistent with what is expected, although there are some test failures when running with IO threading. |
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests per second, as detailed by [dan touitou](https://github.com/touitou-dan) in valkey-io#22. This PR modifies the IO threads to be fully asynchronous, which is a first and necessary step to allow more work offloading and better utilization of the IO threads. ### Current IO threads state: Valkey IO threads were introduced in Redis 6.0 to allow better utilization of multi-core machines. Before this, Redis was single-threaded and could only use one CPU core for network and command processing. The introduction of IO threads helps in offloading the IO operations to multiple threads. **Current IO Threads flow:** 1. Initialization: When Redis starts, it initializes a specified number of IO threads. These threads are in addition to the main thread, each thread starts with an empty list, the main thread will populate that list in each event-loop with pending-read-clients or pending-write-clients. 2. Read Phase: The main thread accepts incoming connections and reads requests from clients. The reading of requests are offloaded to IO threads. The main thread puts the clients ready-to-read in a list and set the global io_threads_op to IO_THREADS_OP_READ, the IO threads pick the clients up, perform the read operation and parse the first incoming command. 3. Command Processing: After reading the requests, command processing is still single-threaded and handled by the main thread. 4. Write Phase: Similar to the read phase, the write phase is also be offloaded to IO threads. The main thread prepares the response in the clients’ output buffer then the main thread puts the client in the list, and sets the global io_threads_op to the IO_THREADS_OP_WRITE. The IO threads then pick the clients up and perform the write operation to send the responses back to clients. 5. Synchronization: The main-thread communicate with the threads on how many jobs left per each thread with atomic counter. The main-thread doesn’t access the clients while being handled by the IO threads. **Issues with current implementation:** * Underutilized Cores: The current implementation of IO-threads leads to the underutilization of CPU cores. * The main thread remains responsible for a significant portion of IO-related tasks that could be offloaded to IO-threads. * When the main-thread is processing client’s commands, the IO threads are idle for a considerable amount of time. * Notably, the main thread's performance during the IO-related tasks is constrained by the speed of the slowest IO-thread. * Limited Offloading: Currently, Since the Main-threads waits synchronously for the IO threads, the Threads perform only read-parse, and write operations, with parsing done only for the first command. If the threads can do work asynchronously we may offload more work to the threads reducing the load from the main-thread. * TLS: Currently, we don't support IO threads with TLS (where offloading IO would be more beneficial) since TLS read/write operations are not thread-safe with the current implementation. ### Suggested change Non-blocking main thread - The main thread and IO threads will operate in parallel to maximize efficiency. The main thread will not be blocked by IO operations. It will continue to process commands independently of the IO thread's activities. **Implementation details** **Inter-thread communication.** * We use a static, lock-free ring buffer of fixed size (2048 jobs) for the main thread to send jobs and for the IO to receive them. If the ring buffer fills up, the main thread will handle the task itself, acting as back pressure (in case IO operations are more expensive than command processing). A static ring buffer is a better candidate than a dynamic job queue as it eliminates the need for allocation/freeing per job. * An IO job will be in the format: ` [void* function-call-back | void *data] `where data is either a client to read/write from and the function-ptr is the function to be called with the data for example readQueryFromClient using this format we can use it later to offload other types of works to the IO threads. * The Ring buffer is one way from the main-thread to the IO thread, Upon read/write event the main thread will send a read/write job then in before sleep it will iterate over the pending read/write clients to checking for each client if the IO threads has already finished handling it. The IO thread signals it has finished handling a client read/write by toggling an atomic flag read_state / write_state on the client struct. **Thread Safety** As suggested in this solution, the IO threads are reading from and writing to the clients' buffers while the main thread may access those clients. We must ensure no race conditions or unsafe access occurs while keeping the Valkey code simple and lock free. Minimal Action in the IO Threads The main change is to limit the IO thread operations to the bare minimum. The IO thread will access only the client's struct and only the necessary fields in this struct. The IO threads will be responsible for the following: * Read Operation: The IO thread will only read and parse a single command. It will not update the server stats, handle read errors, or parsing errors. These tasks will be taken care of by the main thread. * Write Operation: The IO thread will only write the available data. It will not free the client's replies, handle write errors, or update the server statistics. To achieve this without code duplication, the read/write code has been refactored into smaller, independent components: * Functions that perform only the read/parse/write calls. * Functions that handle the read/parse/write results. This refactor accounts for the majority of the modifications in this PR. **Client Struct Safe Access** As we ensure that the IO threads access memory only within the client struct, we need to ensure thread safety only for the client's struct's shared fields. * Query Buffer * Command parsing - The main thread will not try to parse a command from the query buffer when a client is offloaded to the IO thread. * Client's memory checks in client-cron - The main thread will not access the client query buffer if it is offloaded and will handle the querybuf grow/shrink when the client is back. * CLIENT LIST command - The main thread will busy-wait for the IO thread to finish handling the client, falling back to the current behavior where the main thread waits for the IO thread to finish their processing. * Output Buffer * The IO thread will not change the client's bufpos and won't free the client's reply lists. These actions will be done by the main thread on the client's return from the IO thread. * bufpos / block→used: As the main thread may change the bufpos, the reply-block→used, or add/delete blocks to the reply list while the IO thread writes, we add two fields to the client struct: io_last_bufpos and io_last_reply_block. The IO thread will write until the io_last_bufpos, which was set by the main-thread before sending the client to the IO thread. If more data has been added to the cob in between, it will be written in the next write-job. In addition, the main thread will not trim or merge reply blocks while the client is offloaded. * Parsing Fields * Client's cmd, argc, argv, reqtype, etc., are set during parsing. * The main thread will indicate to the IO thread not to parse a cmd if the client is not reset. In this case, the IO thread will only read from the network and won't attempt to parse a new command. * The main thread won't access the c→cmd/c→argv in the CLIENT LIST command as stated before it will busy wait for the IO threads. * Client Flags * c→flags, which may be changed by the main thread in multiple places, won't be accessed by the IO thread. Instead, the main thread will set the c→io_flags with the information necessary for the IO thread to know the client's state. * Client Close * On freeClient, the main thread will busy wait for the IO thread to finish processing the client's read/write before proceeding to free the client. * Client's Memory Limits * The IO thread won't handle the qb/cob limits. In case a client crosses the qb limit, the IO thread will stop reading for it, letting the main thread know that the client crossed the limit. **TLS** TLS is currently not supported with IO threads for the following reasons: 1. Pending reads - If SSL has pending data that has already been read from the socket, there is a risk of not calling the read handler again. To handle this, a list is used to hold the pending clients. With IO threads, multiple threads can access the list concurrently. 2. Event loop modification - Currently, the TLS code registers/unregisters the file descriptor from the event loop depending on the read/write results. With IO threads, multiple threads can modify the event loop struct simultaneously. 3. The same client can be sent to 2 different threads concurrently (redis/redis#12540). Those issues were handled in the current PR: 1. The IO thread only performs the read operation. The main thread will check for pending reads after the client returns from the IO thread and will be the only one to access the pending list. 2. The registering/unregistering of events will be similarly postponed and handled by the main thread only. 3. Each client is being sent to the same dedicated thread (c→id % num_of_threads). **Sending Replies Immediately with IO threads.** Currently, after processing a command, we add the client to the pending_writes_list. Only after processing all the clients do we send all the replies. Since the IO threads are now working asynchronously, we can send the reply immediately after processing the client’s requests, reducing the command latency. However, if we are using AOF=always, we must wait for the AOF buffer to be written, in which case we revert to the current behavior. **IO threads dynamic adjustment** Currently, we use an all-or-nothing approach when activating the IO threads. The current logic is as follows: if the number of pending write clients is greater than twice the number of threads (including the main thread), we enable all threads; otherwise, we enable none. For example, if 8 IO threads are defined, we enable all 8 threads if there are 16 pending clients; else, we enable none. It makes more sense to enable partial activation of the IO threads. If we have 10 pending clients, we will enable 5 threads, and so on. This approach allows for a more granular and efficient allocation of resources based on the current workload. In addition, the user will now be able to change the number of I/O threads at runtime. For example, when decreasing the number of threads from 4 to 2, threads 3 and 4 will be closed after flushing their job queues. **Tests** Currently, we run the io-threads tests with 4 IO threads (https://github.com/valkey-io/valkey/blob/443d80f1686377ad42cbf92d98ecc6d240325ee1/.github/workflows/daily.yml#L353). This means that we will not activate the IO threads unless there are 8 (threads * 2) pending write clients per single loop, which is unlikely to happened in most of tests, meaning the IO threads are not currently being tested. To enforce the main thread to always offload work to the IO threads, regardless of the number of pending events, we add an events-per-io-thread configuration with a default value of 2. When set to 0, this configuration will force the main thread to always offload work to the IO threads. When we offload every single read/write operation to the IO threads, the IO-threads are running with 100% CPU when running multiple tests concurrently some tests fail as a result of larger than expected command latencies. To address this issue, we have to add some after or wait_for calls to some of the tests to ensure they pass with IO threads as well. Signed-off-by: Uri Yagelnik <[email protected]> Signed-off-by: hwware <[email protected]>
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests per second, as detailed by [dan touitou](https://github.com/touitou-dan) in valkey-io#22. This PR modifies the IO threads to be fully asynchronous, which is a first and necessary step to allow more work offloading and better utilization of the IO threads. ### Current IO threads state: Valkey IO threads were introduced in Redis 6.0 to allow better utilization of multi-core machines. Before this, Redis was single-threaded and could only use one CPU core for network and command processing. The introduction of IO threads helps in offloading the IO operations to multiple threads. **Current IO Threads flow:** 1. Initialization: When Redis starts, it initializes a specified number of IO threads. These threads are in addition to the main thread, each thread starts with an empty list, the main thread will populate that list in each event-loop with pending-read-clients or pending-write-clients. 2. Read Phase: The main thread accepts incoming connections and reads requests from clients. The reading of requests are offloaded to IO threads. The main thread puts the clients ready-to-read in a list and set the global io_threads_op to IO_THREADS_OP_READ, the IO threads pick the clients up, perform the read operation and parse the first incoming command. 3. Command Processing: After reading the requests, command processing is still single-threaded and handled by the main thread. 4. Write Phase: Similar to the read phase, the write phase is also be offloaded to IO threads. The main thread prepares the response in the clients’ output buffer then the main thread puts the client in the list, and sets the global io_threads_op to the IO_THREADS_OP_WRITE. The IO threads then pick the clients up and perform the write operation to send the responses back to clients. 5. Synchronization: The main-thread communicate with the threads on how many jobs left per each thread with atomic counter. The main-thread doesn’t access the clients while being handled by the IO threads. **Issues with current implementation:** * Underutilized Cores: The current implementation of IO-threads leads to the underutilization of CPU cores. * The main thread remains responsible for a significant portion of IO-related tasks that could be offloaded to IO-threads. * When the main-thread is processing client’s commands, the IO threads are idle for a considerable amount of time. * Notably, the main thread's performance during the IO-related tasks is constrained by the speed of the slowest IO-thread. * Limited Offloading: Currently, Since the Main-threads waits synchronously for the IO threads, the Threads perform only read-parse, and write operations, with parsing done only for the first command. If the threads can do work asynchronously we may offload more work to the threads reducing the load from the main-thread. * TLS: Currently, we don't support IO threads with TLS (where offloading IO would be more beneficial) since TLS read/write operations are not thread-safe with the current implementation. ### Suggested change Non-blocking main thread - The main thread and IO threads will operate in parallel to maximize efficiency. The main thread will not be blocked by IO operations. It will continue to process commands independently of the IO thread's activities. **Implementation details** **Inter-thread communication.** * We use a static, lock-free ring buffer of fixed size (2048 jobs) for the main thread to send jobs and for the IO to receive them. If the ring buffer fills up, the main thread will handle the task itself, acting as back pressure (in case IO operations are more expensive than command processing). A static ring buffer is a better candidate than a dynamic job queue as it eliminates the need for allocation/freeing per job. * An IO job will be in the format: ` [void* function-call-back | void *data] `where data is either a client to read/write from and the function-ptr is the function to be called with the data for example readQueryFromClient using this format we can use it later to offload other types of works to the IO threads. * The Ring buffer is one way from the main-thread to the IO thread, Upon read/write event the main thread will send a read/write job then in before sleep it will iterate over the pending read/write clients to checking for each client if the IO threads has already finished handling it. The IO thread signals it has finished handling a client read/write by toggling an atomic flag read_state / write_state on the client struct. **Thread Safety** As suggested in this solution, the IO threads are reading from and writing to the clients' buffers while the main thread may access those clients. We must ensure no race conditions or unsafe access occurs while keeping the Valkey code simple and lock free. Minimal Action in the IO Threads The main change is to limit the IO thread operations to the bare minimum. The IO thread will access only the client's struct and only the necessary fields in this struct. The IO threads will be responsible for the following: * Read Operation: The IO thread will only read and parse a single command. It will not update the server stats, handle read errors, or parsing errors. These tasks will be taken care of by the main thread. * Write Operation: The IO thread will only write the available data. It will not free the client's replies, handle write errors, or update the server statistics. To achieve this without code duplication, the read/write code has been refactored into smaller, independent components: * Functions that perform only the read/parse/write calls. * Functions that handle the read/parse/write results. This refactor accounts for the majority of the modifications in this PR. **Client Struct Safe Access** As we ensure that the IO threads access memory only within the client struct, we need to ensure thread safety only for the client's struct's shared fields. * Query Buffer * Command parsing - The main thread will not try to parse a command from the query buffer when a client is offloaded to the IO thread. * Client's memory checks in client-cron - The main thread will not access the client query buffer if it is offloaded and will handle the querybuf grow/shrink when the client is back. * CLIENT LIST command - The main thread will busy-wait for the IO thread to finish handling the client, falling back to the current behavior where the main thread waits for the IO thread to finish their processing. * Output Buffer * The IO thread will not change the client's bufpos and won't free the client's reply lists. These actions will be done by the main thread on the client's return from the IO thread. * bufpos / block→used: As the main thread may change the bufpos, the reply-block→used, or add/delete blocks to the reply list while the IO thread writes, we add two fields to the client struct: io_last_bufpos and io_last_reply_block. The IO thread will write until the io_last_bufpos, which was set by the main-thread before sending the client to the IO thread. If more data has been added to the cob in between, it will be written in the next write-job. In addition, the main thread will not trim or merge reply blocks while the client is offloaded. * Parsing Fields * Client's cmd, argc, argv, reqtype, etc., are set during parsing. * The main thread will indicate to the IO thread not to parse a cmd if the client is not reset. In this case, the IO thread will only read from the network and won't attempt to parse a new command. * The main thread won't access the c→cmd/c→argv in the CLIENT LIST command as stated before it will busy wait for the IO threads. * Client Flags * c→flags, which may be changed by the main thread in multiple places, won't be accessed by the IO thread. Instead, the main thread will set the c→io_flags with the information necessary for the IO thread to know the client's state. * Client Close * On freeClient, the main thread will busy wait for the IO thread to finish processing the client's read/write before proceeding to free the client. * Client's Memory Limits * The IO thread won't handle the qb/cob limits. In case a client crosses the qb limit, the IO thread will stop reading for it, letting the main thread know that the client crossed the limit. **TLS** TLS is currently not supported with IO threads for the following reasons: 1. Pending reads - If SSL has pending data that has already been read from the socket, there is a risk of not calling the read handler again. To handle this, a list is used to hold the pending clients. With IO threads, multiple threads can access the list concurrently. 2. Event loop modification - Currently, the TLS code registers/unregisters the file descriptor from the event loop depending on the read/write results. With IO threads, multiple threads can modify the event loop struct simultaneously. 3. The same client can be sent to 2 different threads concurrently (redis/redis#12540). Those issues were handled in the current PR: 1. The IO thread only performs the read operation. The main thread will check for pending reads after the client returns from the IO thread and will be the only one to access the pending list. 2. The registering/unregistering of events will be similarly postponed and handled by the main thread only. 3. Each client is being sent to the same dedicated thread (c→id % num_of_threads). **Sending Replies Immediately with IO threads.** Currently, after processing a command, we add the client to the pending_writes_list. Only after processing all the clients do we send all the replies. Since the IO threads are now working asynchronously, we can send the reply immediately after processing the client’s requests, reducing the command latency. However, if we are using AOF=always, we must wait for the AOF buffer to be written, in which case we revert to the current behavior. **IO threads dynamic adjustment** Currently, we use an all-or-nothing approach when activating the IO threads. The current logic is as follows: if the number of pending write clients is greater than twice the number of threads (including the main thread), we enable all threads; otherwise, we enable none. For example, if 8 IO threads are defined, we enable all 8 threads if there are 16 pending clients; else, we enable none. It makes more sense to enable partial activation of the IO threads. If we have 10 pending clients, we will enable 5 threads, and so on. This approach allows for a more granular and efficient allocation of resources based on the current workload. In addition, the user will now be able to change the number of I/O threads at runtime. For example, when decreasing the number of threads from 4 to 2, threads 3 and 4 will be closed after flushing their job queues. **Tests** Currently, we run the io-threads tests with 4 IO threads (https://github.com/valkey-io/valkey/blob/443d80f1686377ad42cbf92d98ecc6d240325ee1/.github/workflows/daily.yml#L353). This means that we will not activate the IO threads unless there are 8 (threads * 2) pending write clients per single loop, which is unlikely to happened in most of tests, meaning the IO threads are not currently being tested. To enforce the main thread to always offload work to the IO threads, regardless of the number of pending events, we add an events-per-io-thread configuration with a default value of 2. When set to 0, this configuration will force the main thread to always offload work to the IO threads. When we offload every single read/write operation to the IO threads, the IO-threads are running with 100% CPU when running multiple tests concurrently some tests fail as a result of larger than expected command latencies. To address this issue, we have to add some after or wait_for calls to some of the tests to ensure they pass with IO threads as well. Signed-off-by: Uri Yagelnik <[email protected]>
### IO-Threads Work Offloading This PR is the 2nd of 3 PRs intended to achieve the goal of 1M requests per second. (1st PR: #758) This PR offloads additional work to the I/O threads, beyond the current read-parse/write operations, to better utilize the I/O threads and reduce the load on the main thread. It contains the following 3 commits: ### Poll Offload Currently, the main thread is responsible for executing the poll-wait system call, while the IO threads wait for tasks from the main thread. The poll-wait operation is expensive and can consume up to 30% of the main thread's time. We could have let the IO threads do the poll-wait by themselves, with each thread listening to some of the clients and notifying the main thread when a client's command is ready to execute. However, the current approach, where the main thread listens for events from the network, has several benefits. The main thread remains in charge, allowing it to know the state of each client (idle/read/write/close) at any given time. Additionally, it makes the threads flexible, enabling us to drain an IO thread's job queue and stop a thread when the load is light without modifying the event loop and moving its clients to a different IO thread. Furthermore, with this approach, the IO threads don't need to wait for both messages from the network and from the main thread instead, the threads wait only for tasks from the main thread. To enjoy the benefits of both the main thread remaining in charge and the poll being offloaded, we propose offloading the poll-wait as a single-time, non-blocking job to one of the IO threads. The IO thread will perform a poll-wait non-blocking call while the main thread processes the client commands. Later, in `aeProcessEvents`, instead of sleeping on the poll, we check for the IO thread's poll-wait results. The poll-wait will be offloaded in `beforeSleep` only when there are ready events for the main thread to process. If no events are pending, the main thread will revert to the current behavior and sleep on the poll by itself. **Implementation Details** A new call back `custompoll` was added to the `aeEventLoop` when not set to `NULL` the ae will call the `custompoll` callback instead of the `aeApiPoll`. When the poll is offloaded we will set the `custompoll` to `getIOThreadPollResults` and send a poll-job to the thread. the thread will take a mutex, call a non-blocking (with timeout 0) to `aePoll` which will populate the fired events array. the IO thread will set the `server.io_fired_events` to the number of the returning `numevents`, later the main-thread in `custompoll` will return the `server.io_fired_events` and will set the `customPoll` back to `NULL`. To ensure thread safety when accessing server.el, all functions that modify the eventloop events were wrapped with a mutex to ensure mutual exclusion when modifying the events. ### Command Lookup Offload As the IO thread parses the command from the client's Querybuf, it can perform a command lookup in the commands dictionary, which can consume up to ~5% of the main-thread runtime. **Implementation details** The IO thread will store the looked-up command in the client's new field `io_parsed_cmd` field. We can't use `c->cmd` for that since we use `c->cmd `to check if a command was reprocessed or not. To ensure thread safety when accessing the command dictionary, we make sure the main thread isn't changing the dictionary while IO threads are accessing it. This is accomplished by introducing a new flag called `no_incremental_rehash` for the `dictType` commands. When performing `dictResize`, we will rehash the entire dictionary in place rather than deferring the process. ### Free Offload Since the command arguments are allocated by the I/O thread, it would be beneficial if they were also freed by the same thread. If the main thread frees objects allocated by the I/O thread, two issues arise: 1. During the freeing process, the main thread needs to access the SDS pointed to by the object to get its length. 2. With Jemalloc, each thread manages thread local pool (`tcache`) of buffers for quick reallocation without accessing the arena. If the main thread constantly frees objects allocated by other threads, those threads will have to frequently access the shared arena to obtain new memory allocations **Implementation Details** When freeing the client's argv, we will send the argv array to the thread that allocated it. The thread will be identified by the client ID. When freeing an object during `dbOverwrite`, we will offload the object free as well. We will extend this to offload the free during `dbDelete` in a future PR, as its effects on defrag/memory evictions need to be studied. --------- Signed-off-by: Uri Yagelnik <[email protected]>
### IO-Threads Work Offloading This PR is the 2nd of 3 PRs intended to achieve the goal of 1M requests per second. (1st PR: valkey-io#758) This PR offloads additional work to the I/O threads, beyond the current read-parse/write operations, to better utilize the I/O threads and reduce the load on the main thread. It contains the following 3 commits: ### Poll Offload Currently, the main thread is responsible for executing the poll-wait system call, while the IO threads wait for tasks from the main thread. The poll-wait operation is expensive and can consume up to 30% of the main thread's time. We could have let the IO threads do the poll-wait by themselves, with each thread listening to some of the clients and notifying the main thread when a client's command is ready to execute. However, the current approach, where the main thread listens for events from the network, has several benefits. The main thread remains in charge, allowing it to know the state of each client (idle/read/write/close) at any given time. Additionally, it makes the threads flexible, enabling us to drain an IO thread's job queue and stop a thread when the load is light without modifying the event loop and moving its clients to a different IO thread. Furthermore, with this approach, the IO threads don't need to wait for both messages from the network and from the main thread instead, the threads wait only for tasks from the main thread. To enjoy the benefits of both the main thread remaining in charge and the poll being offloaded, we propose offloading the poll-wait as a single-time, non-blocking job to one of the IO threads. The IO thread will perform a poll-wait non-blocking call while the main thread processes the client commands. Later, in `aeProcessEvents`, instead of sleeping on the poll, we check for the IO thread's poll-wait results. The poll-wait will be offloaded in `beforeSleep` only when there are ready events for the main thread to process. If no events are pending, the main thread will revert to the current behavior and sleep on the poll by itself. **Implementation Details** A new call back `custompoll` was added to the `aeEventLoop` when not set to `NULL` the ae will call the `custompoll` callback instead of the `aeApiPoll`. When the poll is offloaded we will set the `custompoll` to `getIOThreadPollResults` and send a poll-job to the thread. the thread will take a mutex, call a non-blocking (with timeout 0) to `aePoll` which will populate the fired events array. the IO thread will set the `server.io_fired_events` to the number of the returning `numevents`, later the main-thread in `custompoll` will return the `server.io_fired_events` and will set the `customPoll` back to `NULL`. To ensure thread safety when accessing server.el, all functions that modify the eventloop events were wrapped with a mutex to ensure mutual exclusion when modifying the events. ### Command Lookup Offload As the IO thread parses the command from the client's Querybuf, it can perform a command lookup in the commands dictionary, which can consume up to ~5% of the main-thread runtime. **Implementation details** The IO thread will store the looked-up command in the client's new field `io_parsed_cmd` field. We can't use `c->cmd` for that since we use `c->cmd `to check if a command was reprocessed or not. To ensure thread safety when accessing the command dictionary, we make sure the main thread isn't changing the dictionary while IO threads are accessing it. This is accomplished by introducing a new flag called `no_incremental_rehash` for the `dictType` commands. When performing `dictResize`, we will rehash the entire dictionary in place rather than deferring the process. ### Free Offload Since the command arguments are allocated by the I/O thread, it would be beneficial if they were also freed by the same thread. If the main thread frees objects allocated by the I/O thread, two issues arise: 1. During the freeing process, the main thread needs to access the SDS pointed to by the object to get its length. 2. With Jemalloc, each thread manages thread local pool (`tcache`) of buffers for quick reallocation without accessing the arena. If the main thread constantly frees objects allocated by other threads, those threads will have to frequently access the shared arena to obtain new memory allocations **Implementation Details** When freeing the client's argv, we will send the argv array to the thread that allocated it. The thread will be identified by the client ID. When freeing an object during `dbOverwrite`, we will offload the object free as well. We will extend this to offload the free during `dbDelete` in a future PR, as its effects on defrag/memory evictions need to be studied. --------- Signed-off-by: Uri Yagelnik <[email protected]>
Fix bug in writeToClient In #758, a major refactor was done to `networking.c`. As part of this refactor, a new bug was introduced: we don't advance the `c->buf` pointer in repeated writes. This bug should be very unlikely to manifest, as it requires the client's TCP buffer to be filled in the first try and then released immediately after in the second try. Despite all my efforts to reproduce this scenario, I was unable to do so. Signed-off-by: Uri Yagelnik <[email protected]>
Fix bug in writeToClient In valkey-io#758, a major refactor was done to `networking.c`. As part of this refactor, a new bug was introduced: we don't advance the `c->buf` pointer in repeated writes. This bug should be very unlikely to manifest, as it requires the client's TCP buffer to be filled in the first try and then released immediately after in the second try. Despite all my efforts to reproduce this scenario, I was unable to do so. Signed-off-by: Uri Yagelnik <[email protected]> Signed-off-by: mwish <[email protected]>
Why is |
…effect. (#1138) this fixes: #1116 _Issue details from #1116 by @zuiderkwast_ > This config is undocumented since #758. The default was changed to "yes" and it is quite useless to set it to "no". Yet, it can happen that some user has an old config file where it is explicitly set to "no". The result will be bad performace, since I/O threads will not do all the I/O. > > It's indeed confusing. > > 1. Either remove the whole option from the code. And thus no need for documentation. _OR:_ > 2. Introduce the option back in the configuration, just as a comment is fine. And showing the default value "yes": `# io-threads-do-reads yes` with additional text. > > _Originally posted by @melroy89 in [#1019 (reply in thread)](https://github.com/orgs/valkey-io/discussions/1019#discussioncomment-10824778)_ --------- Signed-off-by: Shivshankar-Reddy <[email protected]>
…effect. (valkey-io#1138) this fixes: valkey-io#1116 _Issue details from valkey-io#1116 by @zuiderkwast_ > This config is undocumented since valkey-io#758. The default was changed to "yes" and it is quite useless to set it to "no". Yet, it can happen that some user has an old config file where it is explicitly set to "no". The result will be bad performace, since I/O threads will not do all the I/O. > > It's indeed confusing. > > 1. Either remove the whole option from the code. And thus no need for documentation. _OR:_ > 2. Introduce the option back in the configuration, just as a comment is fine. And showing the default value "yes": `# io-threads-do-reads yes` with additional text. > > _Originally posted by @melroy89 in [valkey-io#1019 (reply in thread)](https://github.com/orgs/valkey-io/discussions/1019#discussioncomment-10824778)_ --------- Signed-off-by: Shivshankar-Reddy <[email protected]>
This PR fixes the missing stat update for `total_net_repl_output_bytes` that was removed during the refactoring in PR #758. The metric was not being updated when writing to replica connections. Changes: - Restored the stat update in postWriteToClient for replica connections - Added integration test to verify the metric is properly updated Signed-off-by: Uri Yagelnik <[email protected]> Co-authored-by: Binbin <[email protected]>
This PR is 1 of 3 PRs intended to achieve the goal of 1 million requests per second, as detailed by dan touitou in #22. This PR modifies the IO threads to be fully asynchronous, which is a first and necessary step to allow more work offloading and better utilization of the IO threads.
Current IO threads state:
Valkey IO threads were introduced in Redis 6.0 to allow better utilization of multi-core machines. Before this, Redis was single-threaded and could only use one CPU core for network and command processing. The introduction of IO threads helps in offloading the IO operations to multiple threads.
Current IO Threads flow:
Issues with current implementation:
Suggested change
Non-blocking main thread - The main thread and IO threads will operate in parallel to maximize efficiency. The main thread will not be blocked by IO operations. It will continue to process commands independently of the IO thread's activities.
Implementation details
Inter-thread communication.
[void* function-call-back | void *data]
where data is either a client to read/write from and the function-ptr is the function to be called with the data for example readQueryFromClient using this format we can use it later to offload other types of works to the IO threads.Thread Safety
As suggested in this solution, the IO threads are reading from and writing to the clients' buffers while the main thread may access those clients.
We must ensure no race conditions or unsafe access occurs while keeping the Valkey code simple and lock free.
Minimal Action in the IO Threads
The main change is to limit the IO thread operations to the bare minimum. The IO thread will access only the client's struct and only the necessary fields in this struct.
The IO threads will be responsible for the following:
To achieve this without code duplication, the read/write code has been refactored into smaller, independent components:
This refactor accounts for the majority of the modifications in this PR.
Client Struct Safe Access
As we ensure that the IO threads access memory only within the client struct, we need to ensure thread safety only for the client's struct's shared fields.
TLS
TLS is currently not supported with IO threads for the following reasons:
Those issues were handled in the current PR:
Sending Replies Immediately with IO threads.
Currently, after processing a command, we add the client to the pending_writes_list. Only after processing all the clients do we send all the replies. Since the IO threads are now working asynchronously, we can send the reply immediately after processing the client’s requests, reducing the command latency. However, if we are using AOF=always, we must wait for the AOF buffer to be written, in which case we revert to the current behavior.
IO threads dynamic adjustment
Currently, we use an all-or-nothing approach when activating the IO threads. The current logic is as follows: if the number of pending write clients is greater than twice the number of threads (including the main thread), we enable all threads; otherwise, we enable none. For example, if 8 IO threads are defined, we enable all 8 threads if there are 16 pending clients; else, we enable none.
It makes more sense to enable partial activation of the IO threads. If we have 10 pending clients, we will enable 5 threads, and so on. This approach allows for a more granular and efficient allocation of resources based on the current workload.
In addition, the user will now be able to change the number of I/O threads at runtime. For example, when decreasing the number of threads from 4 to 2, threads 3 and 4 will be closed after flushing their job queues.
Tests
Currently, we run the io-threads tests with 4 IO threads (
valkey/.github/workflows/daily.yml
Line 353 in 443d80f
To enforce the main thread to always offload work to the IO threads, regardless of the number of pending events, we add an events-per-io-thread configuration with a default value of 2. When set to 0, this configuration will force the main thread to always offload work to the IO threads.
When we offload every single read/write operation to the IO threads, the IO-threads are running with 100% CPU when running multiple tests concurrently some tests fail as a result of larger than expected command latencies. To address this issue, we have to add some after or wait_for calls to some of the tests to ensure they pass with IO threads as well.