Skip to content

Commit

Permalink
sagemathgh-39115: first step of removal of IntegralDomain
Browse files Browse the repository at this point in the history
    
another good step towards the removal of the auld category
`IntegralDomain`

It seems reasonable to do this by chunks.

### 📝 Checklist

- [x] The title is concise and informative.
- [x] The description explains in detail what this PR is about.
- [ ] I have linked a relevant issue or discussion.
- [ ] I have created tests covering the changes.
- [x] I have updated the documentation and checked the documentation
preview.
    
URL: sagemath#39115
Reported by: Frédéric Chapoton
Reviewer(s): Martin Rubey
  • Loading branch information
Release Manager committed Dec 13, 2024
2 parents e2604e8 + 52bb268 commit dbf5dac
Show file tree
Hide file tree
Showing 8 changed files with 60 additions and 58 deletions.
1 change: 0 additions & 1 deletion src/doc/en/thematic_tutorials/coercion_and_categories.rst
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,6 @@ This base class provides a lot more methods than a general parent::
'is_commutative',
'is_field',
'krull_dimension',
'localization',
'ngens',
'one',
'order',
Expand Down
31 changes: 31 additions & 0 deletions src/sage/categories/integral_domains.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,37 @@ def is_integral_domain(self, proof=True):
"""
return True

def is_field(self, proof=True):
r"""
Return ``True`` if this ring is a field.
EXAMPLES::
sage: ZZ['x'].is_field()
False
"""
if self.is_finite():
return True
if proof:
raise NotImplementedError(f"unable to determine whether or not {self} is a field.")
return False

def localization(self, additional_units, names=None, normalize=True, category=None):
"""
Return the localization of ``self`` at the given additional units.
EXAMPLES::
sage: R.<x, y> = GF(3)[]
sage: R.localization((x*y, x**2 + y**2)) # needs sage.rings.finite_rings
Multivariate Polynomial Ring in x, y over Finite Field of size 3
localized at (y, x, x^2 + y^2)
sage: ~y in _ # needs sage.rings.finite_rings
True
"""
from sage.rings.localization import Localization
return Localization(self, additional_units, names=names, normalize=normalize, category=category)

def _test_fraction_field(self, **options):
r"""
Test that the fraction field, if it is implemented, works
Expand Down
16 changes: 16 additions & 0 deletions src/sage/categories/rings.py
Original file line number Diff line number Diff line change
Expand Up @@ -554,6 +554,22 @@ def is_subring(self, other):
except (TypeError, AttributeError):
return False

def localization(self, *args, **kwds):
"""
Return the localization of ``self``.
This only works for integral domains.
EXAMPLES::
sage: R = Zmod(6)
sage: R.localization((4))
Traceback (most recent call last):
...
TypeError: self must be an integral domain
"""
raise TypeError("self must be an integral domain")

def bracket(self, x, y):
"""
Return the Lie bracket `[x, y] = x y - y x` of `x` and `y`.
Expand Down
3 changes: 1 addition & 2 deletions src/sage/rings/abc.pyx
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
"""
Abstract base classes for rings
"""
from sage.rings.ring import IntegralDomain


class NumberField_quadratic(Field):
Expand Down Expand Up @@ -419,7 +418,7 @@ class Order:
pass


class pAdicRing(IntegralDomain):
class pAdicRing(CommutativeRing):
r"""
Abstract base class for :class:`~sage.rings.padics.generic_nodes.pAdicRingGeneric`.
Expand Down
19 changes: 8 additions & 11 deletions src/sage/rings/localization.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@

from sage.structure.unique_representation import UniqueRepresentation
from sage.categories.integral_domains import IntegralDomains
from sage.rings.ring import IntegralDomain
from sage.structure.parent import Parent
from sage.structure.element import IntegralDomainElement


Expand All @@ -193,7 +193,7 @@ def normalize_extra_units(base_ring, add_units, warning=True):
INPUT:
- ``base_ring`` -- an instance of :class:`IntegralDomain`
- ``base_ring`` -- a ring in the category of :class:`IntegralDomains`
- ``add_units`` -- list of elements from base ring
- ``warning`` -- boolean (default: ``True``); to suppress a warning which
is thrown if no normalization was possible
Expand Down Expand Up @@ -561,7 +561,7 @@ def _integer_(self, Z=None):
return self._value._integer_(Z=Z)


class Localization(IntegralDomain, UniqueRepresentation):
class Localization(Parent, UniqueRepresentation):
r"""
The localization generalizes the construction of the field of fractions of
an integral domain to an arbitrary ring. Given a (not necessarily
Expand All @@ -580,21 +580,18 @@ class Localization(IntegralDomain, UniqueRepresentation):
this class relies on the construction of the field of fraction and is
therefore restricted to integral domains.
Accordingly, this class is inherited from :class:`IntegralDomain` and can
only be used in that context. Furthermore, the base ring should support
Accordingly, the base ring must be in the category of ``IntegralDomains``.
Furthermore, the base ring should support
:meth:`sage.structure.element.CommutativeRingElement.divides` and the exact
division operator ``//`` (:meth:`sage.structure.element.Element.__floordiv__`)
in order to guarantee a successful application.
INPUT:
- ``base_ring`` -- an instance of :class:`Ring` allowing the construction
of :meth:`fraction_field` (that is an integral domain)
- ``base_ring`` -- a ring in the category of ``IntegralDomains``
- ``extra_units`` -- tuple of elements of ``base_ring`` which should be
turned into units
- ``names`` -- passed to :class:`IntegralDomain`
- ``normalize`` -- boolean (default: ``True``); passed to :class:`IntegralDomain`
- ``category`` -- (default: ``None``) passed to :class:`IntegralDomain`
- ``category`` -- (default: ``None``) passed to :class:`Parent`
- ``warning`` -- boolean (default: ``True``); to suppress a warning which
is thrown if ``self`` cannot be represented uniquely
Expand Down Expand Up @@ -712,7 +709,7 @@ def __init__(self, base_ring, extra_units, names=None, normalize=True, category=
# since by construction the base ring must contain non units self must be infinite
category = IntegralDomains().Infinite()

IntegralDomain.__init__(self, base_ring, names=names, normalize=normalize, category=category)
Parent.__init__(self, base=base_ring, names=names, normalize=normalize, category=category)
self._extra_units = tuple(extra_units)
self._fraction_field = base_ring.fraction_field()
self._populate_coercion_lists_()
Expand Down
2 changes: 1 addition & 1 deletion src/sage/rings/number_field/number_field_base.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ cdef class NumberField(Field):
+Infinity
"""
# This token docstring is mostly there to prevent Sphinx from pasting in
# the docstring of the __init__ method inherited from IntegralDomain, which
# the docstring of the __init__ method inherited from Field, which
# is rather confusing.
def _pushout_(self, other):
r"""
Expand Down
4 changes: 3 additions & 1 deletion src/sage/rings/power_series_ring.py
Original file line number Diff line number Diff line change
Expand Up @@ -1323,7 +1323,9 @@ def laurent_series_ring(self):
return self.__laurent_series_ring


class PowerSeriesRing_domain(PowerSeriesRing_generic, ring.IntegralDomain):
class PowerSeriesRing_domain(PowerSeriesRing_generic):
_default_category = _IntegralDomains

def fraction_field(self):
"""
Return the Laurent series ring over the fraction field of the base
Expand Down
42 changes: 0 additions & 42 deletions src/sage/rings/ring.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -773,25 +773,6 @@ cdef class CommutativeRing(Ring):
Ring.__init__(self, base_ring, names=names, normalize=normalize,
category=category)

def localization(self, additional_units, names=None, normalize=True, category=None):
"""
Return the localization of ``self`` at the given additional units.
EXAMPLES::
sage: R.<x, y> = GF(3)[]
sage: R.localization((x*y, x**2 + y**2)) # needs sage.rings.finite_rings
Multivariate Polynomial Ring in x, y over Finite Field of size 3
localized at (y, x, x^2 + y^2)
sage: ~y in _ # needs sage.rings.finite_rings
True
"""
if not self.is_integral_domain():
raise TypeError("self must be an integral domain.")

from sage.rings.localization import Localization
return Localization(self, additional_units, names=names, normalize=normalize, category=category)

def fraction_field(self):
"""
Return the fraction field of ``self``.
Expand Down Expand Up @@ -1018,29 +999,6 @@ cdef class IntegralDomain(CommutativeRing):
CommutativeRing.__init__(self, base_ring, names=names, normalize=normalize,
category=category)

def is_field(self, proof=True):
r"""
Return ``True`` if this ring is a field.
EXAMPLES::
sage: GF(7).is_field()
True
The following examples have their own ``is_field`` implementations::
sage: ZZ.is_field(); QQ.is_field()
False
True
sage: R.<x> = PolynomialRing(QQ); R.is_field()
False
"""
if self.is_finite():
return True
if proof:
raise NotImplementedError("unable to determine whether or not is a field.")
else:
return False

cdef class NoetherianRing(CommutativeRing):
_default_category = NoetherianRings()
Expand Down

0 comments on commit dbf5dac

Please sign in to comment.