Skip to content

Files for a tutorial to train SegNet for road scenes using the CamVid dataset

Notifications You must be signed in to change notification settings

vimers/SegNet-Tutorial

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SegNet and Bayesian SegNet Tutorial

This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian SegNet' tutorials here: http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html

Please see this link for detailed instructions.

Caffe-SegNet

SegNet requires a modified version of Caffe to run. Please download and compile caffe-segnet to use these models: https://github.com/alexgkendall/caffe-segnet

This version supports cudnn v2 acceleration. @TimoSaemann has a branch supporting a more recent version of Caffe (Dec 2016) with cudnn v5.1: https://github.com/TimoSaemann/caffe-segnet-cudnn5

Getting Started with Live Demo

If you would just like to try out an example model, then you can find the model used in the SegNet webdemo in the folder Example_Models/. You will need to download the weights separately using the link in the SegNet Model Zoo.

First open Scripts/webcam_demo.py and edit line 14 to match the path to your installation of SegNet. You will also need a webcam, or alternatively edit line 39 to input a video file instead. To run the demo use the command:

python Scripts/webcam_demo.py --model Example_Models/segnet_model_driving_webdemo.prototxt --weights /Example_Models/segnet_weights_driving_webdemo.caffemodel --colours /Scripts/camvid12.png

Getting Started with Docker

Use docker to compile caffe and run the examples. In order to run caffe on the gpu using docker, please install nvidia-docker (see https://github.com/NVIDIA/nvidia-docker or using ansbile: https://galaxy.ansible.com/ryanolson/nvidia-docker/)

to run caffe on the CPU:

docker build -t bvlc/caffe:cpu ./cpu 
# check if working
docker run -ti bvlc/caffe:cpu caffe --version
# get a bash in container to run examples
docker run -ti --volume=$(pwd):/SegNet -u $(id -u):$(id -g) bvlc/caffe:cpu bash

to run caffe on the GPU:

docker build -t bvlc/caffe:gpu ./gpu
# check if working
docker run -ti bvlc/caffe:gpu caffe device_query -gpu 0
# get a bash in container to run examples
docker run -ti --volume=$(pwd):/SegNet -u $(id -u):$(id -g) bvlc/caffe:gpu bash

Example Models

A number of example models for indoor and outdoor road scene understanding can be found in the SegNet Model Zoo.

Publications

For more information about the SegNet architecture:

http://arxiv.org/abs/1511.02680 Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding." arXiv preprint arXiv:1511.02680, 2015.

http://arxiv.org/abs/1511.00561 Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." PAMI, 2017.

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here: http://creativecommons.org/licenses/by-nc/4.0/

Contact

Alex Kendall

[email protected]

Cambridge University

About

Files for a tutorial to train SegNet for road scenes using the CamVid dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 56.6%
  • C++ 18.5%
  • MATLAB 16.7%
  • Dockerfile 8.2%