- summary table and plots:
python -m trajnetplusplustools.summarize <dataset_files>
- plot sample trajectories:
python -m trajnetplusplustools.trajectories <dataset_file>
- visualize interactions:
python -m trajnetplusplustools.visualize_type <dataset_file>
- obtain distribution of trajectory types:
python -m trajnetplusplustools.dataset_stats <dataset_file>
trajnetplusplustools.Reader
: class to read the dataset_filetrajnetplusplustools.show
: module containing contexts for visualizingrows
andpaths
trajnetplusplustools.writers
: write a trajnet dataset filetrajnetplusplustools.metrics
: contains unimodal metrics:average_l2(), final_l2() and collision()
and multimodal metrics:topk() and nll()
implementations
Datasets are split into train
, val
and test
set.
Every line is a self contained JSON string (ndJSON).
Scene:
{"scene": {"id": 266, "p": 254, "s": 10238, "e": 10358, "fps": 2.5, "tag": 2}}
Track:
{"track": {"f": 10238, "p": 248, "x": 13.2, "y": 5.85}}
with:
id
: scene idp
: pedestrian ids
,e
: start and end frame idfps
: frame ratetag
: trajectory typef
: frame idx
,y
: x- and y-coordinate in meterspred_number
: (optional) prediction number for multiple output predictionsscene_id
: (optional) corresponding scene_id for multiple output predictions
Frame numbers are not recomputed. Rows are resampled to about 2.5 rows per second.
pylint trajnetplusplustools
python -m pytest
# optional: mypy trajnetplusplustools --disallow-untyped-defs
biwi_hotel:
crowds_students001:
crowds_students003:
crowds_zara02:
crowds_zara03:
dukemtmc:
syi:
wildtrack:
leader_follower:
collision_avoidance:
group:
others:
If you find this code useful in your research then please cite
@inproceedings{Kothari2020HumanTF, title={Human Trajectory Forecasting in Crowds: A Deep Learning Perspective}, author={Parth Kothari and Sven Kreiss and Alexandre Alahi}, year={2020} }