Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add gradio chatbot for openai webserver #2306

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
81 changes: 81 additions & 0 deletions examples/gradio_openai_webserver.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import argparse
from openai import OpenAI
import gradio as gr

# Argument parser setup
parser = argparse.ArgumentParser(
description='Chatbot Interface with Customizable Parameters')
parser.add_argument('--model-url',
type=str,
default='http://localhost:8000/v1',
help='Model URL')
parser.add_argument('-m',
'--model',
type=str,
required=True,
help='Model name for the chatbot')
parser.add_argument('--temp',
type=float,
default=0.8,
help='Temperature for text generation')
parser.add_argument('--stop-token-ids',
type=str,
default='',
help='Comma-separated stop token IDs')
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=8001)

# Parse the arguments
args = parser.parse_args()

# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = args.model_url

# Create an OpenAI client to interact with the API server
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)


def predict(message, history):
# Convert chat history to OpenAI format
history_openai_format = [{
"role": "system",
"content": "You are a great ai assistant."
}]
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({
"role": "assistant",
"content": assistant
})
history_openai_format.append({"role": "user", "content": message})

# Create a chat completion request and send it to the API server
stream = client.chat.completions.create(
model=args.model, # Model name to use
messages=history_openai_format, # Chat history
temperature=args.temp, # Temperature for text generation
stream=True, # Stream response
extra_body={
'repetition_penalty':
1,
'stop_token_ids': [
int(id.strip()) for id in args.stop_token_ids.split(',')
if id.strip()
] if args.stop_token_ids else []
})

# Read and return generated text from response stream
partial_message = ""
for chunk in stream:
partial_message += (chunk.choices[0].delta.content or "")
yield partial_message


# Create and launch a chat interface with Gradio
gr.ChatInterface(predict).queue().launch(server_name=args.host,
server_port=args.port,
share=True)