Skip to content

Credit Card Fraud Detection - Model-as-a-service with backend using FastAPI. Dockerized both frontend and backend to deploy on AWS EC2 instance .

License

Notifications You must be signed in to change notification settings

vyshnavi-pvr/damg-project

Repository files navigation

DAMG Project: Credit Card Fraud Detection

DAMG 7245 - Big Data and Intelligent Analytics

Fall Semester 2022


Team 2 Information:

NAME NUID
Vyshnavi Pendru 002919813
Moksha Ajaykumar Doshi 002922797

Project Proposal link - Google Codelabs - https://codelabs-preview.appspot.com/?file_id=1qNgCSdMase7BZ0hIgzXX3MoG30t2BKT-CcIxz5PYo1c#8

Project Documentation link- Google Codelabs - https://codelabs-preview.appspot.com/?file_id=1OLQHLza5rEUGrf1w3VChJf5XYeAgSyagsfMOCwpWkmI#0

Project Demo link- https://drive.google.com/drive/folders/1R32qu0MoUBC8avR23ProxYCg6grsVlOo

Project link which is deployed on aws ec2 instance-https://test.nedamg7245fall2022.com/

To Predict whether a given transaction is fraud or not, we have created an streamlit application with backend using fastapi and authenticating with OAuth2 Authentication. Then dockerized both frontend and backend by deploying on AWS EC2 instance .

Steps to Run the Application

  • Install Docker and Docker Compose
  • git clone https://github.com/vyshnavi-pvr/damg-project
  • cd damg-project
  • add credentials in api/.aws and streamlit/.aws
  • sudo docker-compose up -d --build
  • The streamlit application runs on 8501 port and fastpi run on 8001 port

Storing data,model in AWS S3 bucket and retrieving it, Docker , Authentication and Prediction in FastAPI, Authentication in Streamlit, Deploying on AWS - Vyshnavi Pendru

Validation of data using Great Expectations, Data Science, EDA, Modeling & Analysis, Model-as-a-service in FastAPI, Analysis & Model in Streamlit - Moksha Doshi

docker-compose.yml

+---api

Dockerfile

model-as-a-service.py

model.pkl

requirements.txt

run.sh

+---.aws

config

credentials

+---datascience

create_model.py

credit_card_eda_models.ipynb

datascience.ipynb

model.pkl

pickle_model.pkl

+---Great_expectaion_on_data

ge_card_trans.html

+---streamlit

Dockerfile

login.py

Main_Page.py

requirements.txt

+---.aws

config

credentials

+---pages

Data_Statistics.py

Manually_Checking_Predictions.py

Try_Different_Models.py

+---util

get_data_s3.py

About

Credit Card Fraud Detection - Model-as-a-service with backend using FastAPI. Dockerized both frontend and backend to deploy on AWS EC2 instance .

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published