Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a factory robot? Of course you have!
Here you will find an implementation of four neural graphics primitives, being neural radiance fields (NeRF), signed distance functions (SDFs), neural images, and neural volumes. In each case, we train and render a MLP with multiresolution hash input encoding using the tiny-cuda-nn framework.
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller
ACM Transactions on Graphics (SIGGRAPH), July 2022
Project page / Paper / Video / BibTeX
For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing
- An NVIDIA GPU; tensor cores increase performance when available. All shown results come from an RTX 3090.
- A C++14 capable compiler. The following choices are recommended and have been tested:
- Windows: Visual Studio 2019
- Linux: GCC/G++ 7.5 or higher
- CUDA v10.2 or higher and CMake v3.21 or higher.
- (optional) Python 3.7 or higher for interactive bindings. Also, run
pip install -r requirements.txt
. - (optional) OptiX 7.3 or higher for faster mesh SDF training. Set the environment variable
OptiX_INSTALL_DIR
to the installation directory if it is not discovered automatically.
If you are using Linux, install the following packages
sudo apt-get install build-essential git python3-dev python3-pip libopenexr-dev libxi-dev \
libglfw3-dev libglew-dev libomp-dev libxinerama-dev libxcursor-dev
We also recommend installing CUDA and OptiX in /usr/local/
and adding the CUDA installation to your PATH.
For example, if you have CUDA 11.4, add the following to your ~/.bashrc
export PATH="/usr/local/cuda-11.4/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH"
Begin by cloning this repository and all its submodules using the following command:
$ git clone --recursive https://github.com/nvlabs/instant-ngp
$ cd instant-ngp
Then, use CMake to build the project: (on Windows, this must be in a developer command prompt)
instant-ngp$ cmake . -B build
instant-ngp$ cmake --build build --config RelWithDebInfo -j 16
If the build fails, please consult this list of possible fixes before opening an issue.
If the build succeeds, you can now run the code via the build/testbed
executable or the scripts/run.py
script described below.
If automatic GPU architecture detection fails, (as can happen if you have multiple GPUs installed), set the TCNN_CUDA_ARCHITECTURES
enivonment variable for the GPU you would like to use. The following table lists the values for common GPUs. If your GPU is not listed, consult this exhaustive list.
RTX 30X0 | A100 | RTX 20X0 | TITAN V / V100 | GTX 10X0 / TITAN Xp | GTX 9X0 | K80 |
---|---|---|---|---|---|---|
86 | 80 | 75 | 70 | 61 | 52 | 37 |
This codebase comes with an interactive testbed that includes many features beyond our academic publication:
- Additional training features, such as extrinsics and intrinsics optimization.
- Marching cubes for
NeRF->Mesh
andSDF->Mesh
conversion. - A spline-based camera path editor to create videos.
- Debug visualizations of the activations of every neuron input and output.
- And many more task-specific settings.
- See also our one minute demonstration video of the tool.
One test scene is provided in this repository, using a small number of frames from a casually captured phone video:
instant-ngp$ ./build/testbed --scene data/nerf/fox
Alternatively, download any NeRF-compatible scene (e.g. from the NeRF authors' drive). Now you can run:
instant-ngp$ ./build/testbed --scene data/nerf_synthetic/lego/transforms_train.json
For more information about preparing datasets for use with our NeRF implementation, please see this document.
instant-ngp$ ./build/testbed --scene data/sdf/armadillo.obj
instant-ngp$ ./build/testbed --scene data/image/albert.exr
To reproduce the gigapixel results, download, for example, the Tokyo image and convert it to .bin
using the scripts/convert_image.py
script. This custom format improves compatibility and loading speed when resolution is high. Now you can run:
instant-ngp$ ./build/testbed --scene data/image/tokyo.bin
Download the nanovdb volume for the Disney cloud, which is derived from here (CC BY-SA 3.0).
instant-ngp$ ./build/testbed --mode volume --scene data/volume/wdas_cloud_quarter.nvdb
To conduct controlled experiments in an automated fashion, all features from the interactive testbed (and more!) have Python bindings that can be easily instrumented.
For an example of how the ./build/testbed
application can be implemented and extended from within Python, see ./scripts/run.py
, which supports a superset of the command line arguments that ./build/testbed
does.
If you'd rather build new models from the hash encoding and fast neural networks, consider the tiny-cuda-nn's PyTorch extension.
Happy hacking!
Q: How can I run instant-ngp in headless mode?
A: Use ./build/testbed --no-gui
or python scripts/run.py
. You can also compile without GUI via cmake -DNGP_BUILD_WITH_GUI=off ...
Q: Does this codebase run on Google Colab?
A: Yes. See this example by user @myagues. Caveat: this codebase requires large amounts of GPU RAM and might not fit on your assigned GPU. It will also run slower on older GPUs.
Q: Is there a Docker container?
A: Yes. We bundle a Visual Studio Code development container, the .devcontainer/Dockerfile
of which you can also use stand-alone.
If you want to run the container without using VSCode:
docker-compose -f .devcontainer/docker-compose.yml build instant-ngp
xhost local:root
docker-compose -f .devcontainer/docker-compose.yml run instant-ngp /bin/bash
Then run the build commands above as normal.
Q: How can I edit and train the underlying hash encoding or neural network on a new task?
A: Use tiny-cuda-nn's PyTorch extension.
Q: How can I save the trained model and load it again later?
A: Two options:
- Use the GUI's "Snapshot" section.
- Use the Python bindings
load_snapshot
/save_snapshot
(seescripts/run.py
for example usage).
Q: Can this codebase use multiple GPUs at the same time?
A: No. To select a specific GPU to run on, use the CUDA_VISIBLE_DEVICES environment variable. To optimize the compilation for that specific GPU use the TCNN_CUDA_ARCHITECTURES environment variable.
Q: What is the coordinate system convention?
A: See this helpful diagram by user @jc211.
Q: The NeRF reconstruction of my custom dataset looks bad; what can I do?
A: There could be multiple issues:
- COLMAP might have been unable to reconstruct camera poses.
- There might have been movement or blur during capture. Don't treat capture as an artistic task; treat it as photogrammetry. You want *as little blur as possible* in your dataset (motion, defocus, or otherwise) and all objects must be *static* during the entire capture. Bonus points if you are using a wide-angle lens (iPhone wide angle works well), because it covers more space than narrow lenses.
- The dataset parameters (in particular
aabb_scale
) might have been tuned suboptimally. We recommend starting withaabb_scale=16
and then decreasing it to8
,4
,2
, and1
until you get optimal quality. - Carefully read our NeRF training & dataset tips.
Q: Why are background colors randomized during NeRF training?
A: Transparency in the training data indicates a desire for transparency in the learned model. Using a solid background color, the model can minimize its loss by simply predicting that background color, rather than transparency (zero density). By randomizing the background colors, the model is forced to learn zero density to let the randomized colors "shine through".
Q: How to mask away NeRF training pixels (e.g. for dynamic object removal)?
A: For any training image xyz.*
with dynamic objects, you can provide a dynamic_mask_xyz.png
in the same folder. This file must be in PNG format, where non-zero pixel values indicate masked-away regions.
Before investigating further, make sure all submodules are up-to-date and try compiling again.
instant-ngp$ git submodule sync --recursive
instant-ngp$ git submodule update --init --recursive
If instant-ngp still fails to compile, update CUDA as well as your compiler to the latest versions you can install on your system. It is crucial that you update both, as newer CUDA versions are not always compatible with earlier compilers and vice versa. If your problem persists, consult the following table of known issues.
*After each step, delete the build
folder and let CMake regenerate it before trying again.*
Problem | Resolution |
---|---|
CMake error: No CUDA toolset found / CUDA_ARCHITECTURES is empty for target "cmTC_0c70f" | Windows: the Visual Studio CUDA integration was not installed correctly. Follow these instructions to fix the problem without re-installing CUDA. (#18) |
Linux: Environment variables for your CUDA installation are probably incorrectly set. You may work around the issue using cmake . -B build -DCMAKE_CUDA_COMPILER=/usr/local/cuda-<your cuda version>/bin/nvcc (#28) |
|
CMake error: No known features for CXX compiler "MSVC" | Reinstall Visual Studio & make sure you run CMake from a developer shell. (#21) |
Compile error: A single input file is required for a non-link phase when an outputfile is specified | Ensure there no spaces in the path to instant-ngp. Some build systems seem to have trouble with those. (#39 #198) |
Compile error: undefined references to "cudaGraphExecUpdate" / identifier "cublasSetWorkspace" is undefined | Update your CUDA installation (which is likely 11.0) to 11.3 or higher. (#34 #41 #42) |
Compile error: too few arguments in function call | Update submodules with the above two git commands. (#37 #52) |
Python error: No module named 'pyngp' | It is likely that CMake did not detect your Python installation and therefore did not build pyngp . Check CMake logs to verify this. If pyngp was built in a different folder than instant-ngp/build , Python will be unable to detect it and you have to supply the full path to the import statement. (#43) |
If you cannot find your problem in the table, please feel free to open an issue and ask for help.
Many thanks to Jonathan Tremblay and Andrew Tao for testing early versions of this codebase and to Arman Toorians and Saurabh Jain for the factory robot dataset. We also thank Andrew Webb for noticing that one of the prime numbers in the spatial hash was not actually prime; this has been fixed since.
This project makes use of a number of awesome open source libraries, including:
- tiny-cuda-nn for fast CUDA networks and input encodings
- tinyexr for EXR format support
- tinyobjloader for OBJ format support
- stb_image for PNG and JPEG support
- Dear ImGui an excellent immediate mode GUI library
- Eigen a C++ template library for linear algebra
- pybind11 for seamless C++ / Python interop
- and others! See the
dependencies
folder.
Many thanks to the authors of these brilliant projects!
@article{mueller2022instant,
author = {Thomas M\"uller and Alex Evans and Christoph Schied and Alexander Keller},
title = {Instant Neural Graphics Primitives with a Multiresolution Hash Encoding},
journal = {ACM Trans. Graph.},
issue_date = {July 2022},
volume = {41},
number = {4},
month = jul,
year = {2022},
pages = {102:1--102:15},
articleno = {102},
numpages = {15},
url = {https://doi.org/10.1145/3528223.3530127},
doi = {10.1145/3528223.3530127},
publisher = {ACM},
address = {New York, NY, USA},
}
Copyright © 2022, NVIDIA Corporation. All rights reserved.
This work is made available under the Nvidia Source Code License-NC. Click here to view a copy of this license.