Wenlong Wu, EECS, University of Missouri
Notebooks:
- eda-figure.ipynb: exploratory data analysis and generated visualization figures;
- tsne-visualization.ipynb: t-SNE dimension reduction and visualization;
- constant_prediction.ipynb: generate constant prediction using Nov and Dec data;
- preprocess-data-clean.ipynb: data preprocessing;
- feature-engineering.ipynb: feature engineering;
- modeling-lgb.ipynb: modeling using LightGBM model;
- mini_lgb_model.ipynb: modeling using 12 LightGBM models for each cluster;
- check_outliers.ipynb: detect suspicious meters;
- post-processing.ipynb: post processing;
- ensemble.ipynb: ensemble multiple submissions;
- visual_submission.ipynb: generate visualization figures for visualization;
Competition page:
I ranked first position on the final evaluation: