Skip to content

Simple even/odd sudoku solver implementation from CSED332, fall 2018, at POSTECH

Notifications You must be signed in to change notification settings

wldh-ug/CSED332_EvenOddSudoku

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Homework 3

Jio Gim, Creative IT Engineering, POSTECH
Student ID: 20160087, Povis ID: iknowme

🤔 Tip: This page uses KaTeX feature of Gitlab. If you are watching this document in Github, look this prerendered README.

Sudoku Board
Sudoku Board

How I used CNF to solve E/O Sudoku game

Value Mapping

In my solver (named SUDOKUS), $x_{(i,j,k)}$ which means whether if $i$ th row $j$ th column has value $k$ is mapped to $ijk$. For example, when $777$ is true, the cell of $7$ th row $7$ th column should have a value of $7$.

CNF Making

Below items are conjuncted.

  • All possibilities for an empty cell
    For all empty cells, add condition of its all possibilities. For instance, in the cell of $7$ th row $7$ th column on right figure, the number $1$, $3$, $5$, $7$, $9$ cannot be in there. So in this case, the condition $(x_{(7,7,2)}\lor x_{(7,7,4)}\lor x_{(7,7,6)} \lor x_{(7,7,8)})\land \lnot x_{(7,7,1)} \land \lnot x_{(7,7,3)} \land \lnot x_{(7,7,5)} \land \lnot x_{(7,7,7)} \land \lnot x_{(7,7,9)}$ will be included to the CNF sentence. In this phase, Even/Odd Sudoku rules are also applied.

  • Basic Sudoku rules
    There're three major rule: $1$ to $9$ in each sub-grid, in each column, and in each row. This can be expressed in CNF as below.

    • Sub-grid level
      $(x_{(1,1,1)} \lor x_{(1,2,1)} \lor x_{(1,3,1)} \lor x_{(2,1,1)} \lor x_{(2,2,1)} \lor x_{(2,3,1)} \lor x_{(3,1,1)} \lor x_{(3,2,1)} \lor x_{(3,3,1)})$
      $\land (x_{(1,1,2)} \lor x_{(1,2,2)} \lor x_{(1,3,2)} \lor x_{(2,1,2)} \lor x_{(2,2,2)} \lor x_{(2,3,2)} \lor x_{(3,1,2)} \lor x_{(3,2,2)} \lor x_{(3,3,2)})$
      $\cdots$
      $\land (x_{(1,1,9)} \lor x_{(1,2,9)} \lor x_{(1,3,9)} \lor x_{(2,1,9)} \lor x_{(2,2,9)} \lor x_{(2,3,9)} \lor x_{(3,1,9)} \lor x_{(3,2,9)} \lor x_{(3,3,9)})$

    • Row level
      $(x_{(1,1,1)} \lor x_{(1,2,1)} \lor x_{(1,3,1)} \lor x_{(1,4,1)} \lor x_{(1,5,1)} \lor x_{(1,6,1)} \lor x_{(1,7,1)} \lor x_{(1,8,1)} \lor x_{(1,9,1)})$
      $\land (x_{(1,1,2)} \lor x_{(1,2,2)} \lor x_{(1,3,2)} \lor x_{(1,4,2)} \lor x_{(1,5,2)} \lor x_{(1,6,2)} \lor x_{(1,7,2)} \lor x_{(1,8,2)} \lor x_{(1,9,2)})$
      $\cdots$
      $\land (x_{(1,1,9)} \lor x_{(1,2,9)} \lor x_{(1,3,9)} \lor x_{(1,4,9)} \lor x_{(1,5,9)} \lor x_{(1,6,9)} \lor x_{(1,7,9)} \lor x_{(1,8,9)} \lor x_{(1,9,9)})$

    • Column level
      $(x_{(1,1,1)} \lor x_{(2,1,1)} \lor x_{(3,1,1)} \lor x_{(4,1,1)} \lor x_{(5,1,1)} \lor x_{(6,1,1)} \lor x_{(7,1,1)} \lor x_{(8,1,1)} \lor x_{(9,1,1)})$
      $\land (x_{(1,1,2)} \lor x_{(2,1,2)} \lor x_{(3,1,2)} \lor x_{(4,1,2)} \lor x_{(5,1,2)} \lor x_{(6,1,2)} \lor x_{(7,1,2)} \lor x_{(8,1,2)} \lor x_{(9,1,2)})$
      $\cdots$
      $\land (x_{(1,1,9)} \lor x_{(2,1,9)} \lor x_{(3,1,9)} \lor x_{(4,1,9)} \lor x_{(5,1,9)} \lor x_{(6,1,9)} \lor x_{(7,1,9)} \lor x_{(8,1,9)} \lor x_{(9,1,9)})$

    • For all sets of disjunctions above: Make negative tuples of nonsame elements of them to make no any duplicated candidates get still alive in solutions.
      $(x_{(1,1,1)} \lor x_{(2,1,1)} \cdots x_{(9,1,1)})$ $\rightarrow (\lnot x_{(1,1,1)} \lor \lnot x_{(2,1,1)}) \land (\lnot x_{(1,1,1)} \lor \lnot x_{(3,1,1)}) \land \cdots \land (\lnot x_{(8,1,1)} \lor \lnot x_{(9,1,1)})$

References

Development Notes

  • DO NOT USE Lombok → It does not supports Java 10.
  • Logging in file output is now turned off to keep my score safe. It can re-turned on by uncommenting all comments in src/test/resources/logback-test.xml.