This software allows for the training of reucrrent and convolutional neural network architectures for modeling RNA sequences
This software requires the following Python packages: pandas
, numpy
, and tensorflow
.
train_ribonet_kd.py
Example:
python train_ribonet_kd.py examples/train.txt -b 5 2x512
Full list of arguments:
positional arguments:
filename name of input file
n_units numbers of units in hidden layers in the form N,N,N
for CNN or DxN for RNN
optional arguments:
-h, --help show this help message and exit
-t TESTFILE, --testfile TESTFILE
name of test file
-o OPTIMIZER, --optimizer OPTIMIZER
optimizer type (either "gradient", "adam", "adagrad",
or "rmsprop")
-e EPOCHS, --epochs EPOCHS
number of training epochs
-b BATCH_SIZE, --batch_size BATCH_SIZE
number of data points per gpu in each training batch
-k KEEPPROB, --keepprob KEEPPROB
probability to keep a node in dropout
--reporter whether or not to include reporter sequence in input
-l LEARNING_RATE, --learning_rate LEARNING_RATE
learning rate for model training
--batch_norm enable batch normalization
-r RESTORE, --restore RESTORE
file to restore weights from
-w, --write write to log file
-s, --save save variables
-m MODEL, --model MODEL
cnn or rnn
-d SEED, --seed SEED random seed
-g NUM_GPUS, --num_gpus NUM_GPUS
number of gpus to use
--bidirectional if rnn, whether or not it is bidirectional
--lowmem low memory setting
--sterr whether or not to use standard error in loss
computation