- Create a new conda environment
conda create -n dgtr python=3.8
- Install pytorch
conda install pytorch==1.10.0 torchvision==0.11.0 cudatoolkit=11.3 -c pytorch -c conda-forge
- Install pytorch3d
- Download source code of pytorch3d 0.7.2 from link and unzip it.
cd pytorch3d && pip install -e .
- Install other dependencies
conda install -c plotly
conda install -c conda-forge trimesh pyyaml tqdm plyfile multimethod
conda install scipy
conda install -c anaconda lxml
conda install tensorboard
- Install pytorch_kinematics
cd thirdparty/pytorch_kinematics
pip install -e .
- Install CSDF
cd thirdparty/CSDF
pip install -e .
- Install pointnet2
cd thirdparty/pointnet2
python setup.py install
- Install knn
cd thirdparty/knn
python setup.py install
- Install rtree
pip install rtree
- If you have encountered setuptools-related error, this may help:
pip install setuptools==59.5.0
- Train DGTR in Dynamic Match Training phase for 15 epochs.
CUDA_VISIBLE_DEVICES="0" python train.py --train_cfg config/dgtr.yaml
- Train DGTR in Static Match Warm-up Training phase for 5 epochs.
CUDA_VISIBLE_DEVICES="0" python train.py \
--train_cfg config/dgtr.yaml \
-r \
-c <checkpoint of epoch 15> \
--override assignments \"static\" data.train.assignment \"./Experiments/dgtr/assignment_epoch_15.json\"
- Train DGTR in Static Matching Penetration Training phase for 5 epochs.
CUDA_VISIBLE_DEVICES="0" python train.py \
--train_cfg config/dgtr.yaml \
-r \
-c <checkpoint of epoch 20> \
--override assignments \"static\" data.train.assignment \"./Experiments/dgtr/assignment_epoch_15.json\"
python ./test.py \
--train_cfg config/dgtr.yaml \
--test_cfg ./config/test_default.yaml \
--override model.checkpoint_path \"<checkpoint of epoch 25>\"
python ./tools/evaluate.py -r <the path of raw_results.json> --gpus <GPU_ID>
- Release the code of AB-TTA
- Release the training code of DGTR
- Release the inference code of DGTR
The code of this repository is based on the following repositories. We would like to thank the authors for sharing their works.
- Email: {xugh23, weiylin5}@mail2.sysu.edu.cn
Please cite it if you find this work useful.
@inproceedings{xu2024dexterous,
title = {Dexterous Grasp Transformer},
author = {Xu, Guo-Hao and Wei, Yi-Lin and Zheng, Dian and Wu, Xiao-Ming and Zheng, Wei-Shi},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2024}
}