Skip to content

xgpxg/onnx-runner

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

onnx-runner

ONNX RUNNER ORT ONNXRUNTIME OPENCV

build workflow release workflow

Use ORT to run ONNX model.

Currently, only YOLO models are supported, and other ONNX models may be supported in the future

Features

  • Run Yolo's ONNX model for object detect
  • Support multiple image input sources: File, Http(s), Camera, RTSP
  • Support custom models
  • Support sending detection results to files or HTTP api

Install

Requirements

  • If you want to use CPU to run onnx-runner, nothing to install
  • If you want to use GPU to run onnx-runner, you need install CUDA 12.x and CUDNN 9.x

Windows

  • Download latest version: onnx-runner-0.1.2-windows.tar.gz

  • Or download from release page: Releases

  • Extract onnx-runner-{version}-windows.tar.gz to your path. The compressed package already includes the necessary dependencies for running ONNX and OpenCV. You don't need to download any other dependencies

  • Run onnx-runner `` with CMD or PowerShell

    onnx-runner.exe  -m <your_onnx_model> -i <your_input> --show

Ubuntu

  • Download and install

    # Download latest package
    wget https://github.com/xgpxg/onnx-runner/releases/download/v0.1.2/onnx-runner_0.1.2_amd64.deb
    
    # Install package
    sudo apt -f install ./onnx-runner_0.1.2_amd64.deb

    Note:The OpenCV will be installed by default

  • Run onnx-runner

    onnx-runner -m <your_onnx_model> -i <your_input> --show

Other Linux

  • Download latest version: onnx-runner-v0.1.2-linux.tar.gz

  • Extract onnx-runner-{version}-linux.tar.gz to your path.

  • Copy libonnxruntime.so to /usr/lib

  • Install Opencv

  • Run onnx-runner

    onnx-runner -m <your_onnx_model> -i <your_input> --show

MacOS

Not currently supported

usage

CLI

onnx-runner -m yolov8n.onnx -i image.jpg --show

For more information, see help:

onnx-runner -h

Usage: onnx-runner.exe [OPTIONS] --model <MODEL> --input <INPUT>

Options:
  -m, --model <MODEL>                YOLO onnx model file path, support version: v5, v7, v8, v10, and v11
  -i, --input <INPUT>                Input source, like image file, http image, camera, or rtsp
      --yolo-version <YOLO_VERSION>  The number of YOLO version, like 5, 7 ,8 ,10, or 11. Specifically, for YOLO 10, it needs to be set up [default: 8]
      --show                         Optional, should the detection results be displayed in the gui window, default is false
  -n, --names <NAMES>                Optional, multiple category names, each category separated directly by commas
  -t, --threshold <THRESHOLD>        Optional, confidence threshold for detection results [default: 0.5]
  -o, --output <OUTPUT>              Optional, send results to the specified location. Send to file: file://your_path/your_file, send yo http(s) api: http://host/path
  -h, --help                         Print help
  -V, --version                      Print version

Supported input sources:

Input Example
Local image file D:/images/img.png
Internet image file https://cdn.pixabay.com/photo/2019/11/05/01/00/couple-4602505_1280.jpg
Local video file D:/images/video.mp4
Internet video file https://cdn.pixabay.com/video/2024/06/04/215258_large.mp4
Local camera camera://0
Ip camera(RTSP) rtsp://192.168.1.5:554

Lib

You need to install rust and cargo, then add onnx-runner to your project.

cargo add onnx-runner

Example

fn main() {
    //Use default config
    let mut config = ModelRunConfig::default();
    //Create a new runner
    let runner = ModelRunner::new(args.model.as_str(), config).unwrap();
    //Run with input. The input can be a local image, a network image, a camera, or a remote camera that supports RTSP
    runner.run(args.input.as_str(), ModelRunner::no_pre, |res, mut mat| {
        //Your code in here. You can send result to a http 
        println!("Result: {:?}", &res);
    },
    )?;
}

CPU/GPU supports

All CPU are supported.

Currently only supports Nvidia GPUs. You need install CUDA 12.x + and cudnn 9.x + on your device.

Troubleshooting

  • I have installed CUDA and CUDNN, but why is the CPU still used instead of the GPU?

    First check whether the CUDA environment variables have been configured, and then check whether the CUDNN dependency libraries have been copied to the CUDA directory. Pay attention to the versions of CUDA and CUDNN. Currently only CUDA12.x and CUDNN9.x are supported.